# Welcome to .....

#### Hydraulics for Stormwater Quality Design (continued)

INAFSM Annual Conference September 2022





### Introduction

■ Jeffry W. Healy, PE University of Illinois BS Agricultural Engr., 1978 Wright State University, Groundwater Hydrology, 1988 Soil Conservation / NRCS, 1976-1996 Banning Engineering, PC, 1996 – present • Retiring 1/6/2023 (for real)



### **Program Overview**

Discuss / Evaluate Soil Infiltration and Percolation

Evaluate / Design Multi-stage Pond Outlets

Evaluate / Design Best Management Practices

Evaluate Hydraulic Impact of Structural BMP's

Evaluate / Design Flow Through Vegetated Swales

## **Program Overview**

 Discuss / Evaluate Soil Infiltration and Percolation and Flow Through Porous Media

Evaluate / Design Multi-stage Pond Outlets

Evaluate / Design Best Management Practices

Evaluate Hydraulic Impact of Structural BMP's

Evaluate / Design Flow Through Vegetated Swales

# Predicting Soil Infiltration / Permeability



#### Appendix A

#### Hydrologic Soil Groups

Soils are classified into hydrologic soil groups (HSG's) to indicate the minimum rate of infiltration obtained for bare soil after prolonged wetting. The HSG's, which are A, B, C, and D, are one element used in determining runoff curve numbers (see chapter 2). For the convenience of TR-55 users, exhibit A-1 lists the HSG classification of United States soils.

The infiltration rate is the rate at which water enters the soil at the soil surface. It is controlled by surface conditions. HSG also indicates the transmission rate—the rate at which the water moves within the soil. This rate is controlled by the soil profile. Approximate numerical ranges for transmission rates shown in the HSG definitions were first published by Musgrave (USDA 1955). The four groups are defined by SCS soil scientists as follows:

**Group** Asoils have low runoff potential and high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sand or gravel and have a high rate of water transmission (greater than 0.30 in/hr).

**Group** Bsoils have moderate infiltration rates when thoroughly wetted and consist chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission (0.15-0.30 in/hr).

**Group** Csoils have low infiltration rates when thoroughly wetted and consist chiefly of soils with a layer that impedes downward movement of water and soils with moderately fine to fine texture. These soils have a low rate of water transmission (0.05-0.15 in/hr).

Group Dsoils have high runoff potential. They have very low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very low rate of water transmission (0-0.05 in/hr).

In exhibit A-1, some of the listed soils have an added modifier; for example, "Abrazo, gravelly." This refers to a gravelly phase of the Abrazo series that is found in SCS soil map legends.

#### **Disturbed soil profiles**

As a result of urbanization, the soil profile may be considerably altered and the listed group classification may no longer apply. In these circumstances, use the following to determine HSG according to the texture of the new surface soil, provided that significant compaction has not occurred (Brakensiek and Rawls 1983).

| HSG | Soil textures                                               |  |  |  |  |
|-----|-------------------------------------------------------------|--|--|--|--|
| A   | Sand, loamy sand, or sandy loam                             |  |  |  |  |
| в   | Silt loam or loam                                           |  |  |  |  |
| С   | Sandy clay loam                                             |  |  |  |  |
| D   | Clay loam, silty clay loam, sandy clay, silty clay, or clay |  |  |  |  |

#### **Drainage and group D soils**

Some soils in the list are in group D because of a high water table that creates a drainage problem. Once these soils are effectively drained, they are placed in a different group. For example, Ackerman soil is classified as A/D. This indicates that the drained Ackerman soil is in group A and the undrained soil is in group D.

### What Affects Soil Infiltration?

Season / Surface Condition

#### Debris

Soil Saturation



| Map Unit Symbol | Map Unit Name                                                                        | Acres in AOI | Percent of AOI |
|-----------------|--------------------------------------------------------------------------------------|--------------|----------------|
| CrA             | Crosby silt loam, fine-loamy subsoil, 0 to 2 percent slopes                          | 16.9         | 1.7%           |
| FoA             | Fox loam, 0 to 2 percent slopes                                                      | 3.2          | 0.3%           |
| Gn              | Genesee silt loam, 0 to 2 percent slopes,<br>frequently flooded, very brief duration | 53.3         | 5.3%           |
| Gs              | Genesee sandy loam, sandy substratum                                                 | 56.3         | 5.6%           |
| HeF             | Hennepin loam, 25 to 50 percent slopes                                               | 1.0          | 0.1%           |
| MeA             | Martinsville loam, 0 to 2 percent slopes                                             | 1.5          | 0.2%           |
| MmB2            | Miami silt loam, 2 to 6 percent slopes,<br>eroded                                    | 7.2          | 0.7%           |
| MmC2            | Miami silt loam, 6 to 12 percent slopes,<br>eroded                                   | 0.2          | 0.0%           |
| MmD2            | Miami silt loam, 12 to 18 percent slopes,<br>eroded                                  | 9.2          | 0.9%           |
| MmE2            | Miami silt loam, 18 to 25 percent slopes,<br>eroded                                  | 0.9          | 0.1%           |
| MsC3            | Miami clay loam, 6 to 12 percent slopes,                                             | 0.4          | 0.0%           |

#### Soil Map-Hendricks County, Indiana

| Map Unit Symbol | Map Unit Name                                                                        | Abres In AOI | Percent of AOI |
|-----------------|--------------------------------------------------------------------------------------|--------------|----------------|
| 88              | Crosby sit loam, fine-loamy subsoil, 0 to 2<br>percent slopes                        | 16.9         | 1.79           |
| E98.            | Fox loam, 0 to 2 percent slopes                                                      | 3.2          | 0.39           |
| Gn              | Genesee silt loam, 0 to 2 percent slopes,<br>frequently flooded, very brief duration | 53.3         | 5.3)           |
| Gs              | Genesee sendy loem, sandy substratum                                                 | 58.3         | 5.07           |
| HeF             | Hennepin loam, 25 to 50 percent slopes                                               | 1.0          | 0.19           |
| MeA             | Martinsville Ioam, 0 to 2 percent slopes                                             | 1.5          | 0.27           |

Map Unit Legend



#### Saturated Hydraulic Conductivity (Ksat)—Hendricks County, Indiana

| Map unit symbol | Map unit name                                                                        | Rating (micrometers per second) | Acres in AOI | Percent of AOI |  |  |  |  |  |
|-----------------|--------------------------------------------------------------------------------------|---------------------------------|--------------|----------------|--|--|--|--|--|
|                 |                                                                                      |                                 |              |                |  |  |  |  |  |
| CrA             | Crosby silt loam, fine- loamy subsoil, 0 to 2<br>percent slopes                      | 3.5476                          | 16.9         | 1.7%           |  |  |  |  |  |
| FoA             | Fox loam, 0 to 2 percent slopes                                                      | 167.5738                        | 3.2          | 0.3%           |  |  |  |  |  |
| Gn              | Genesee silt loam, 0 to 2 percent slopes,<br>frequently flooded, very brief duration | 9.1700                          | 53.3         | 5.3%           |  |  |  |  |  |
| Gs              | Genesee sandy loam, sandy substratum                                                 | 56.9737                         | 56.3         | 5.6%           |  |  |  |  |  |
| HeF             | Hennepin loam, 25 to 50 percent slopes                                               | 3.2100                          | 1.0          | 0.1%           |  |  |  |  |  |
| MeA             | Martinsville loam, 0 to 2 percent slopes                                             | 10.7492                         | 1.5          | 0.2%           |  |  |  |  |  |
| MmB2            | Miami silt loam, 2 to 6 percent slopes,<br>eroded                                    | 3.9091                          | 7.2          | 0.7%           |  |  |  |  |  |

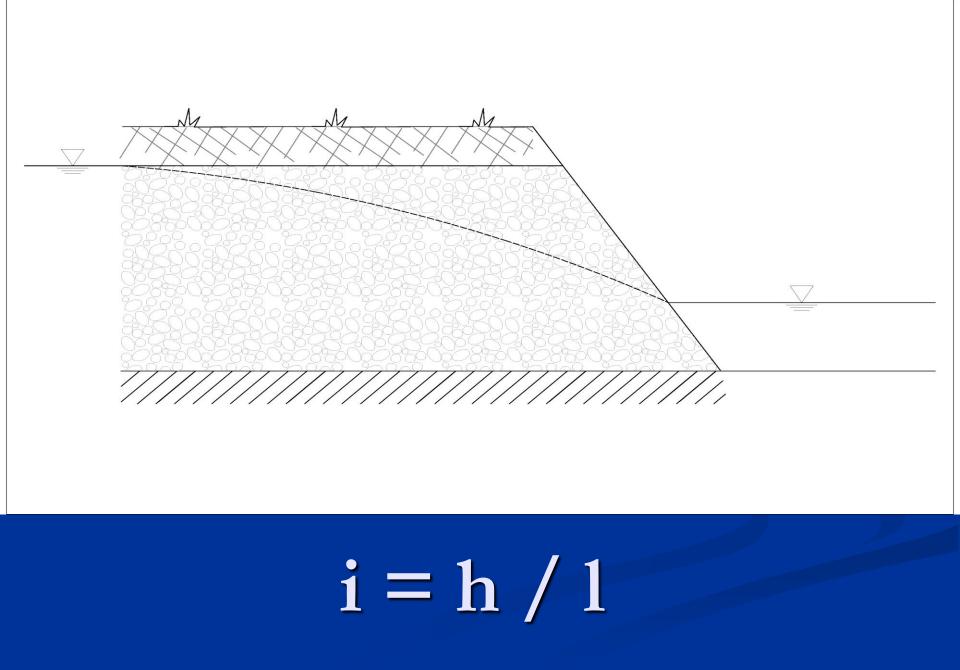
#### Saturated Hydraulic Conductivity (Ksat)-Hendricks County, Indiana

| Map unit symbol | Map unit name                                                                       | Rating (miloromaters per second) | Aores in AOI | Percent of AOI |
|-----------------|-------------------------------------------------------------------------------------|----------------------------------|--------------|----------------|
| GrA             | Crosby sill loam, fine- loamy subsoil, 0 to 2 percent slopes                        | 3.5478                           | 16.9         | 5.7%           |
| FaA             | Fox loam, 0 to 2 percent slopes                                                     | 167.5738                         | 32           | 0.3%           |
| Gn              | Genesee sit loam, 0 to 2 percent slopes,<br>frequently flooded, very brief duration | 9.1700                           | 53.3         | 5.3%           |
| Gs              | Genesee sandy loam, sandy substratum                                                | 66.9737                          | 66.3         | 5.6%           |
| HeF             | Hennepin loam, 25 to 50 percent slopes                                              | 3.2100                           | 1.0          | 0.1%           |
| Meñ             | Martinsville loam, 0 to 2 percent slopes                                            | 10.7492                          | 1.5          | 0.2%           |
| Mm82            | Miami sit loam, 2 to 6 percent slopes,                                              | 3.9091                           | 72           | 0.7%           |

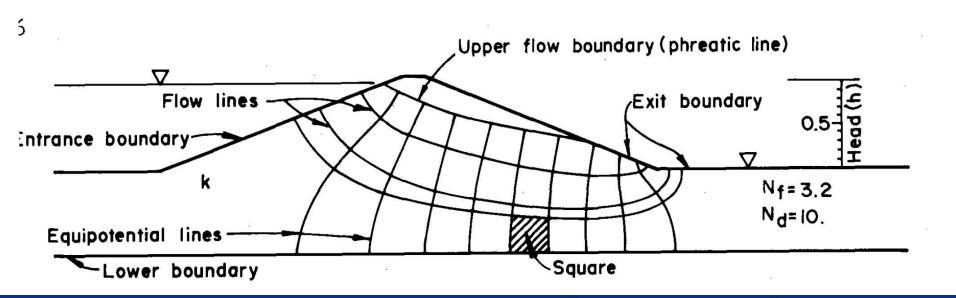
Saturated Hydraulic Conductivity (Ksat)

1 in/hr = 7.05556 micrometers / sec

### So what about your site?

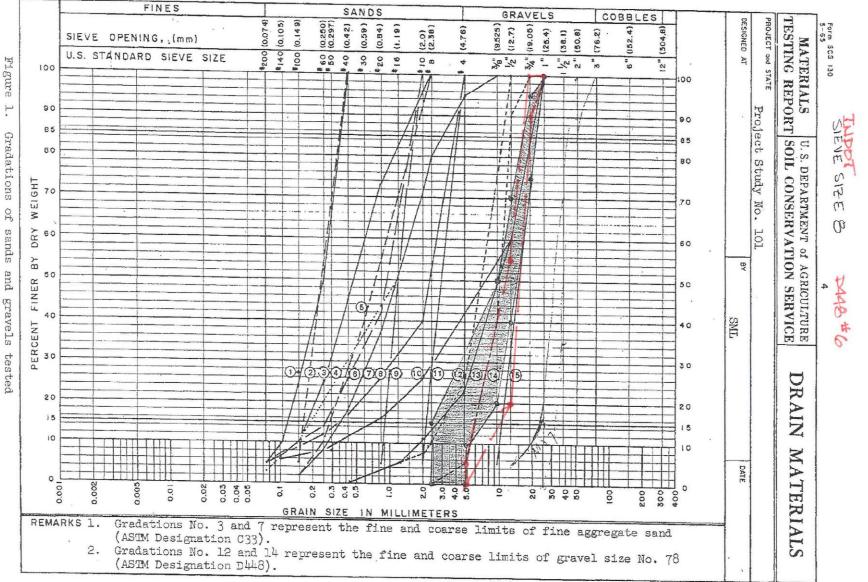

Use mapped values?

Granular soils – field testing

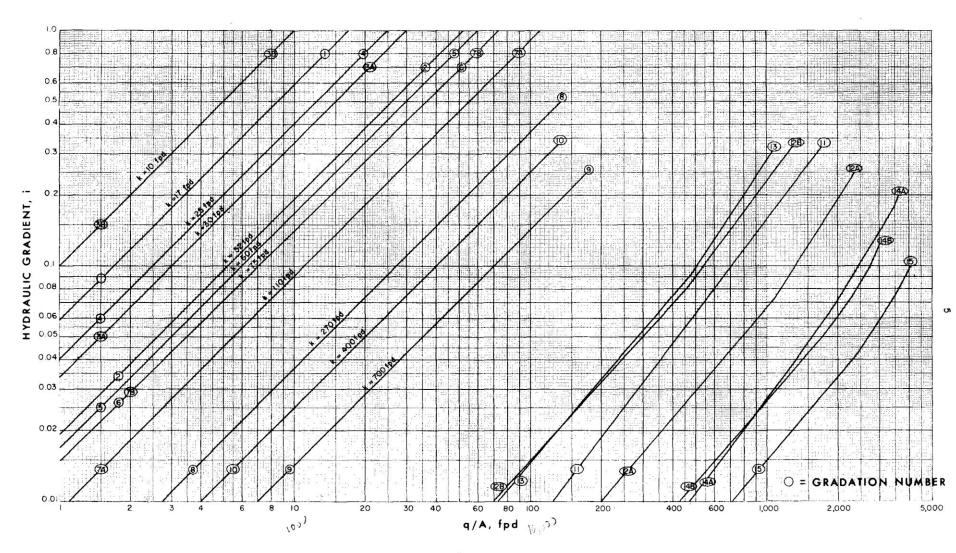

 Fine-grained soils – Shelby tubes and lab falling head permeameter (ASTM D5084)

# Darcy's Law (Flow through Porous Media)

q = k i a

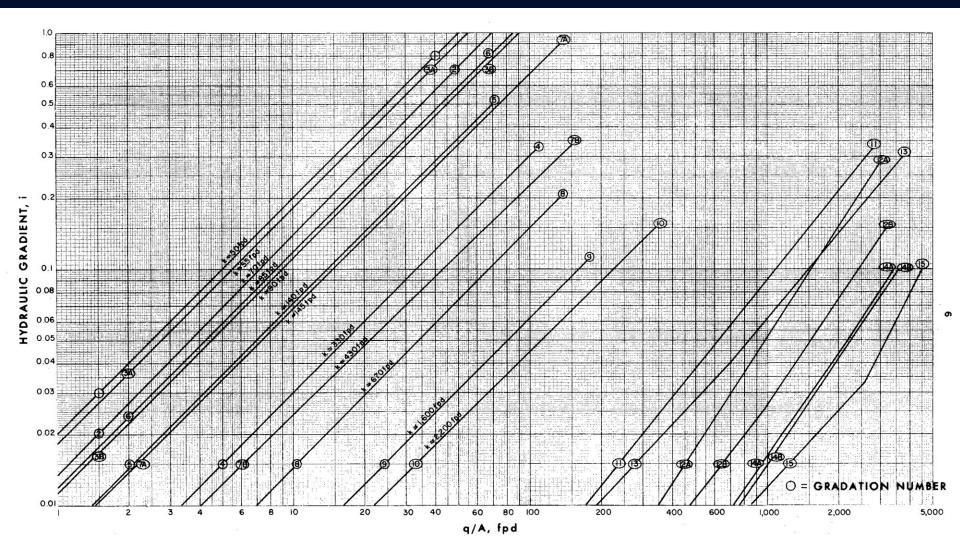



### Flow Net




# Darcy's Law (Flow through Porous Media)

q = k i a




..



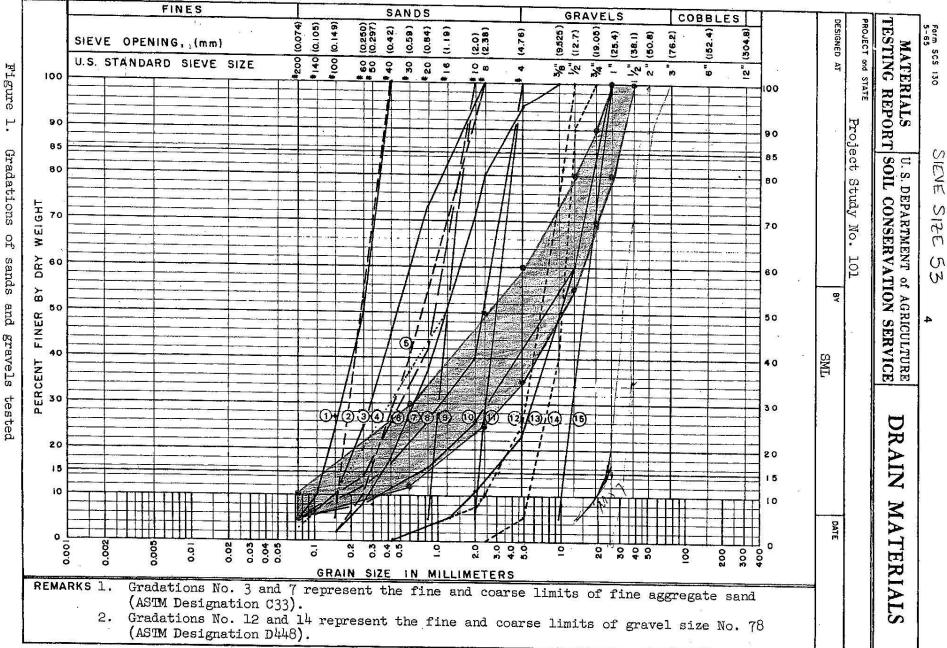
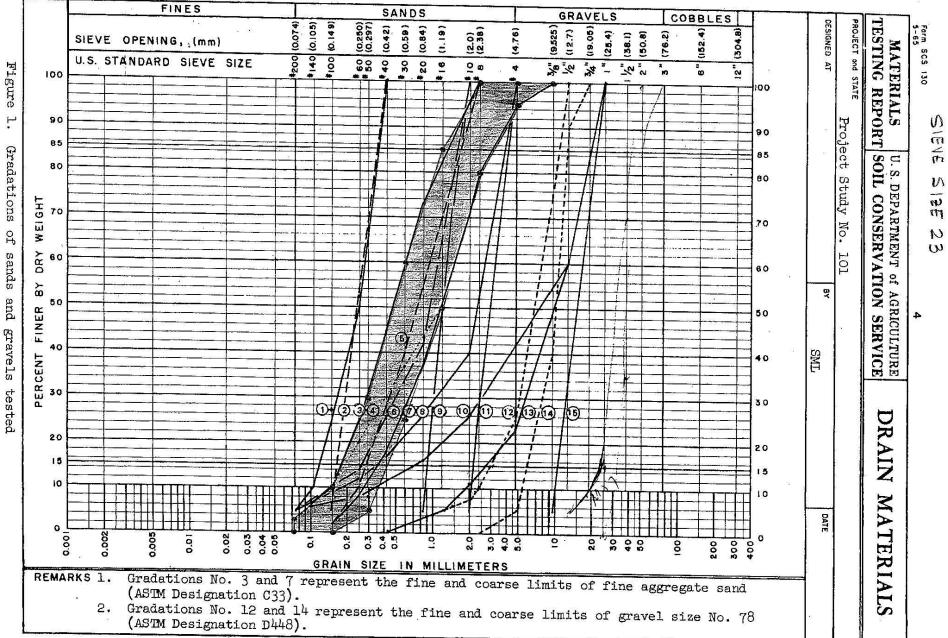

RELATIVE DENSITY ≈ 70%

Figure 2. RELATIONSHIP BETWEEN I AND q/A FOR 15 GRADATIONS OF CLEAN SANDS AND GRAVELS

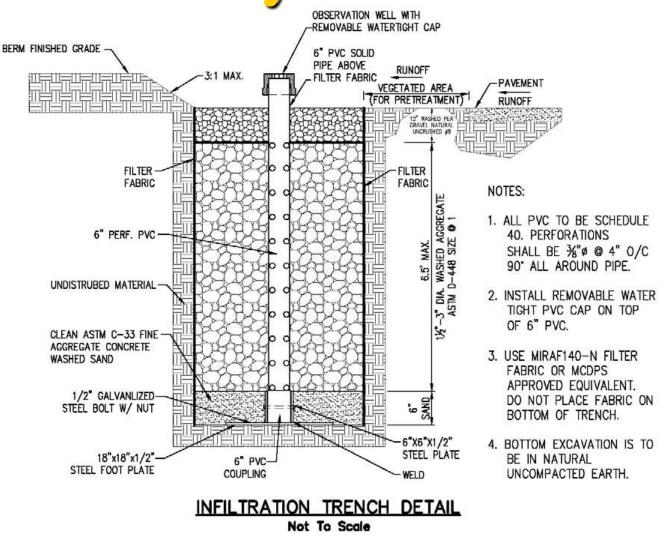



RELATIVE DENSITY ~ MIN.

Figure 3. RELATIONSHIP BETWEEN I AND q/A FOR 15 GRADATIONS OF CLEAN SANDS AND GRAVELS



Ч. Gradations СĻ, sands and gravels



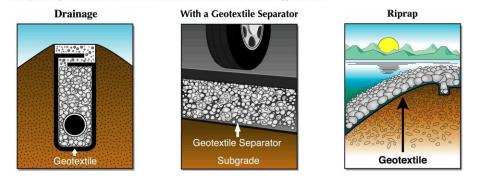

ч. Gradations of sands and gravels

# Darcy's Law (Flow through Porous Media)

q = k i a

# **Boundary Conditions**



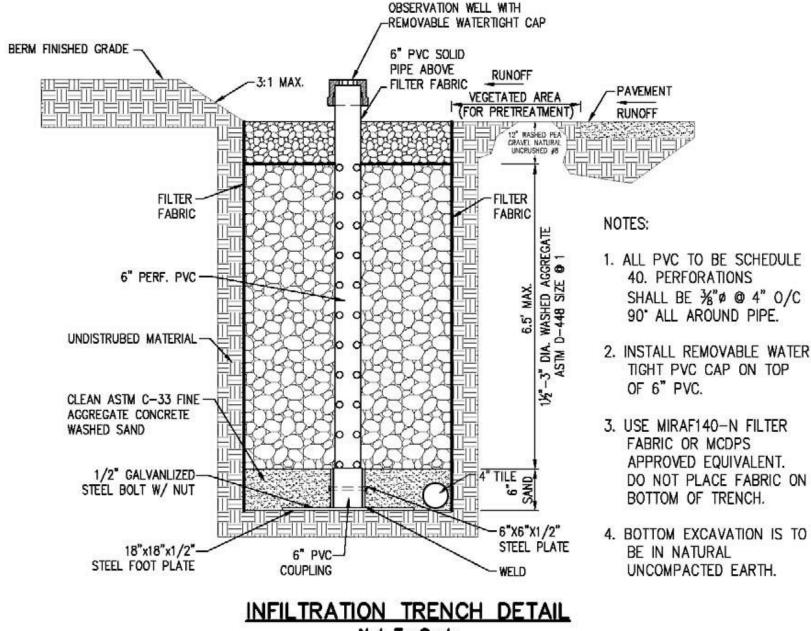



### **US 160NW**

3904 Virginia Ave • Cincinnati, Ohio 45227 • Phone (513) 271-6000 • Fax (513) 271-4420

#### Nonwoven Geotextile

A 6.0 oz/sy nonwoven needlepunched geotextile made of 100% polypropylene staple filaments. This product can be used under riprap, in drainage applications, or can be used for separation under roads, driveways or parking areas. US 160NW will satisfy the requirements as outline in AASHTO M-288 96/00 for Class 2 applications.




| PROPERTY                  | TEST METHOD | ENGLISH                | METRIC                    |
|---------------------------|-------------|------------------------|---------------------------|
| Tensile Strength          | ASTM D-4632 | 160 lbs                | 711 N                     |
| Elongation @ Break        | ASTM D-4632 | 50 %                   | 50 %                      |
| Mullen Burst              | ASTM D-3786 | 315 psi                | 2170 kPa                  |
| Puncture Strength         | ASTM D-4833 | 90 lbs                 | 400 N                     |
| Trapezoidal Tear          | ASTM D-4533 | 65 lbs                 | 289 N                     |
| Apparent Opening Size     | ASTM D-4751 | 70 US Sieve            | 0.212 mm                  |
| Permittivity              | ASTM D-4491 | 1.60 Sec <sup>-1</sup> | 1.60 Sec <sup>-1</sup>    |
| UV Resistance, % Retained | ASTM D-4355 | 70 %                   | 70 %                      |
| Flow Rate                 | ASTM D-4491 | 110 gal/min/sf         | 4480 1/min.m <sup>2</sup> |

The above information is to the best of our knowledge accurate, but is not intended to be considered as a guarantee. Any implied warranty for a particular use or purpose is excluded. If the Product does not meet the above properties, and notice is given to US Fabrics, Inc., the product will be replaced or refunded. (10/2002).

### 1 gal./min./SF = 0.0022 cfs/SF

### 110 gal./min./SF = 0.25 cfs/SF



Not To Scale



Fratco... an Indiana Company serving Indiana and the surrounding area

About Fratco

Products Specifications

Installation

Tools

 $\nabla$ 

#### FRATCO....Tubing Specifications

Fratco tubing and fittings comply with the applicable requirements specified in:

• ASTM F-405

- AASHTO M-252
- ASTM F-667
- · AASHTO M-294
- and/or SCS Code 606

Click the link below for INDOT's "approved pipe supplier" list. (Then click on 'Plastic Pipe Sources' to view the I<sup>-then</sup>'



|                |                | / ,    | /                   | 15    | Ret    | 18    | st.         | (ato) | (÷ ) | with a                     | all as all and |
|----------------|----------------|--------|---------------------|-------|--------|-------|-------------|-------|------|----------------------------|----------------|
| 19:            | 0.0:           | Pitch  | Cost                | Perfe | Pert   | Perfe | Story Story | Hole  | Sale | Interfection of the second | Support to     |
| 3              | 3.65           | .66    | 18                  | 8     | 72     | .65   | .045        | -     | 2.1  | .210                       | -              |
| 4              | 4.75           | .66    | 18                  | 8     | 72     | .65   | .045        | •     | 2.1  | .330                       | .485           |
| 5              | 5.75           | .66    | 18                  | 8     | 72     | .65   | .045        | -     | 2.1  | .474                       |                |
| 6              | 6.90           | .66    | 18                  | 8     | 72     | .65   | .045        | -     | 2.1  | .694                       | .98            |
| 4+             | 4.75           | .66    | 18                  | 3     | 9      | -     | -           | 1/2   | 1.8  | .330                       | -              |
| 5+             | 5.75           | .66    | 18                  | 3     | 9      | 4     | -           | 5/8   | 2.8  | .474                       | -              |
| 6+             | 6.90           | .66    | 18                  | 3     | 9      |       | 4           | 5/8   | 2.8  | .694                       | 199            |
| 8+             | 9.3            | 1      | 12                  | 3     | 9      | -     | -           | 5/8   | 2.8  | 1.10                       |                |
| 8              | 9.3            | 1      | 12                  | 8     | 96     | .65   | .045        | -     | 2.7  | 1.10                       | 1.52           |
| 10             | 11.7           | 1.5    | 8                   | 8     | 64     | .80   | .060        | -     | 3.0  | 1.76                       | 2.55           |
| 12             | 14.6           | 2      | 6                   | 8     | 48     | .80   | .060        | -     | 2.3  | 2.53                       | 3.60           |
| 15             | 18.3           | 2.4    | 5                   | 8     | 40     | -     | -           | 1/4   | 2.0  | 3.88                       | 5.5            |
| 18             | 21.3           | 3      | 4                   | 8     | 32     | -     | -           | 1/4   | 1.6  | 5.0                        | 7.0            |
| 24             | 27.7           | 3      | 4                   | 8     | 32     | 1     | 2           | 1/4   | 1.6  | 10.5                       | 11.0           |
| 30             | 34.8           | 4      | 3                   | 8     | 24     | -     | -           | 1/4   | 1.2  |                            | 16.0           |
| 36             | 41             | 4      | 3                   | -     | -      | -     | -           | -     | -    | -                          | 19.5           |
| 42             | 48.1           | 6      | 2                   | -     | 2      | -     | 2           | -     | -    | 4                          | 27             |
| +19ri<br>* Inc | néđ fo<br>shes | r Sept | iic <sup>2</sup> or | Műck  | c Tubi | ng "  | •           |       | •    | •                          | 32             |

# Design Resource

USDA – NRCS Part 633 NEH Chapter 26 Gradation Design of Sand and Gravel Filters

### Pervious Pavement (thoughts)

More than one-half of all rain falls in storms with less than <sup>1</sup>/<sub>2</sub>-inch rainfall depth

 Pervious Pavement provides runoff coefficient as good as sod.

Pervious Concrete Pavement passes water at 3-5 gal/min/SF [5 gal = 8 inches; 100% effective]

 Installation is the key (Source: T. Fansler III, President, Smock Fansler)

How do you maintain this practice?













# Thanks for Your Participation!

**Questions?** 



