

St. Joseph River Basin Commission

Encouraging Soil & Water Conservation Through Benefit Apportionment a.k.a. Creating Financial Incentives to Reduce Stormwater Infrastructure Burden

How our interests align

What is benefit apportionment?

From the Indiana Drainage Code 369-27-39:

The percentage of the estimated cost of periodically maintaining the drain to be assessed against each tract of land... shall be based on the benefit accruing to each tract of land from the maintenance...

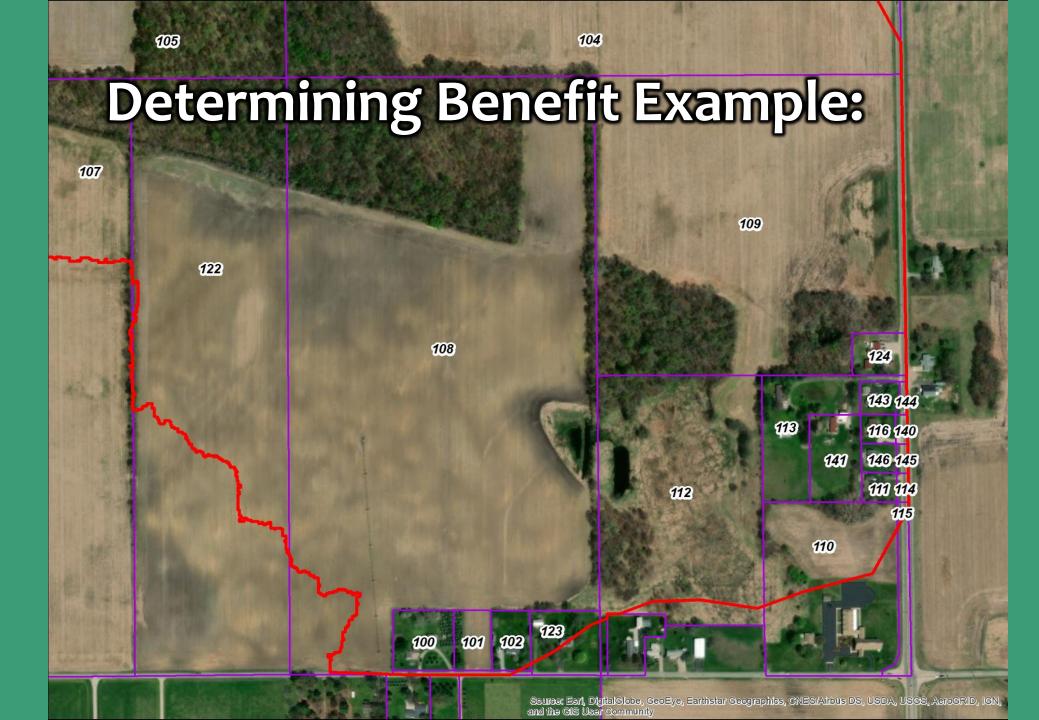
Determining benefits accrued

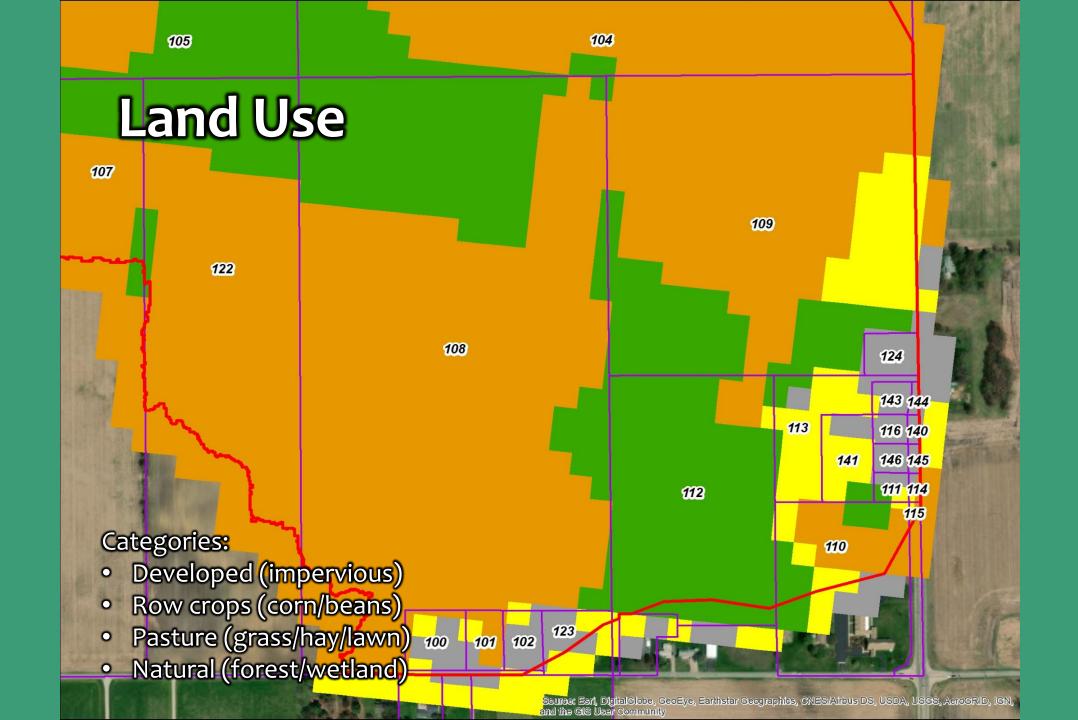
Some benefits are accrued uniformly, but some are determined by the land...

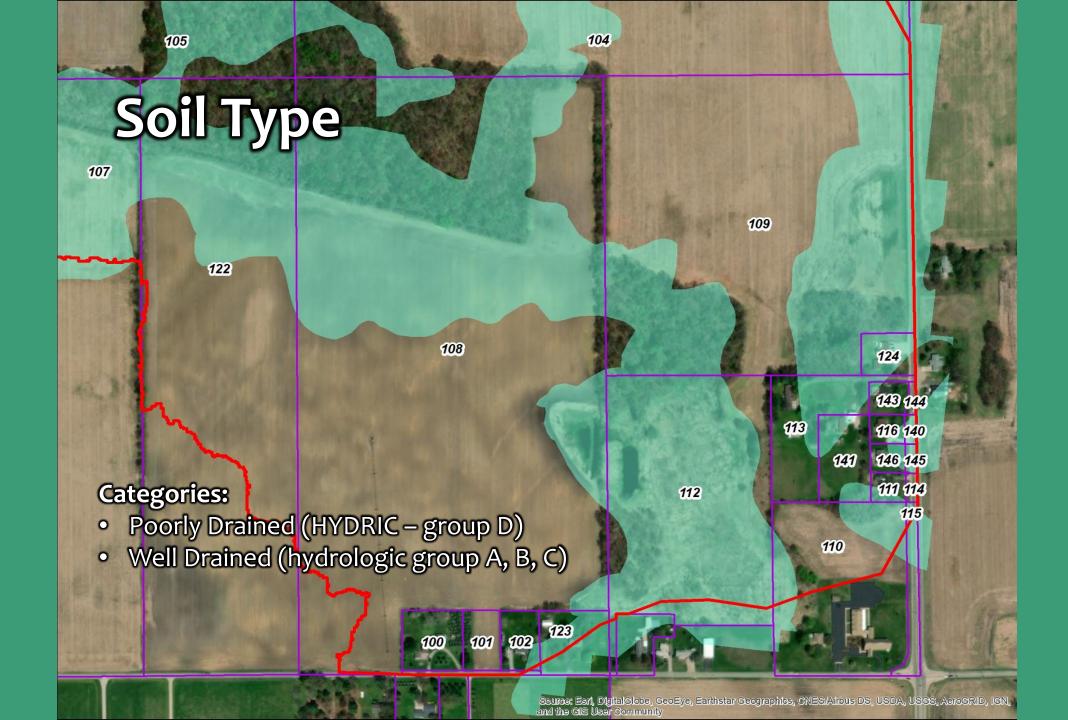
From the Indiana Drainage Code 36-9-27-112:

In determining benefits to land under Section 39, the board may consider:

- 1. The watershed affected by the drain to be maintained;
- 2. The number of acres in each tract;
- The total volume of water draining into or through the drain and the amount of water contributed by each land owner;
- 4. The land use;
- 5. The increased value accruing to each tract of land from the maintenance;
- 6. Whether the various tracts are adjacent, upland, upstream or downstream in relation to the main trunk of the drain;
- 7. Elimination or reduction of damage from floods;
- 8. The soil type; and
- 9. Any other factors affecting the maintenance.




Determining benefits accrued using spatial data & modeling



Soil Type

Next step: Management

	Ap	prox. Cost P	er Acre (after \$5 per parcel):
	0	Developed	Poorly Drained - \$4.26
	0	Row Crops	Poorly Drained - \$4.08
	2		Well Drained - \$4.00
	•	Row Crops	Well Drained - \$2.47
	0		orly Drained - \$2.42
	0		ell Drained - \$1.32
	0	Natural All S	Soils - \$1.06
17			CAR HERE WEIGHTEN

1

Category	Factor	
Land Use / Soil Type	e	
Natural 0.25		
Pasture / Poorly Drained	0.57	
Pasture / Well Drained	0.31	
Row Crops / Poorly Drained	0.96	
Row Crops / Well Drained	0.58	
Developed / Poorly Drained	1.00	
Developed / Well Drained	0.94	

Source: Earl, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

4. 10

A	pprox. Cost Per Acre (after \$5 per parce
0	Developed / Poorly Drained - \$4.26
0	Row Crops / Poorly Drained - \$4.08
.0	Developed / Well Drained - \$4.00
•	Row Crops / Well Drained - \$2.47
0	Pasture / Poorly Drained - \$2.42
0	Pasture / Well Drained - \$1.32
0	Natural All Soils - \$1.06
_	

Category	Factor
Land Use / Soil Type	e
Natural	0.25
Pasture / Poorly Drained	0.57
Pasture / Well Drained	0.31
Row Crops / Poorly Drained	0.96
Row Crops / Well Drained	0.58
Developed / Poorly Drained	1.00
Developed / Well Drained	0.94
	and Prover

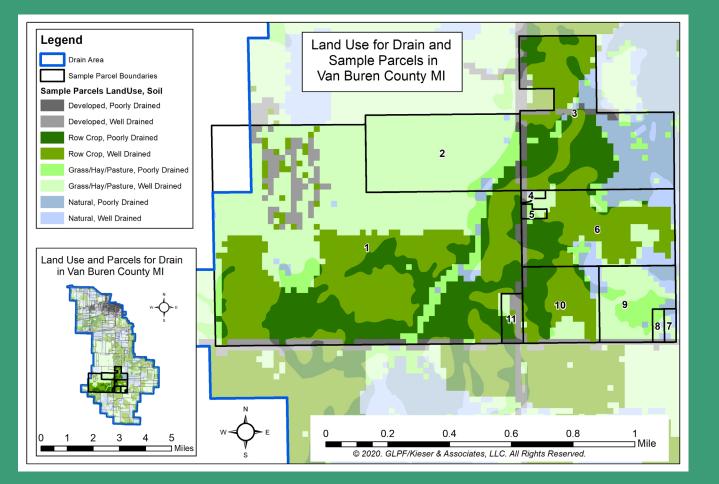
Source: Esrl, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Atrbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

A DE AT

0

1

Next Step: Management Factor


	None	1.00
- Contra	10m Buffer	0.84
	Cover Crops	0.79
The second	Conservation Tillage	0.89
	No-Till	0.74
and the		

BMPs

Alternative Apportionment: Example Case with Management

This example looks at a sample of 11 parcels within a larger, 5,937 acre county drainage watershed including at least a portion of 887 parcels.

Note *Parcel 1* (large western property):

- NW corner of property is out of the drainage watershed
- Within the drainage watershed, *Parcel 1* contains all possible land use and soil type combinations.

Data for Standard Apportionment Method Example Total Parcel Acres		Data for Alternative Apportionment Method Example				
		Grass/Hay/PastureNatural AcresAcres		Row Crop Ag Acres Developed Acres		
Parcel 1	361.1	26.8	136.2	193.6	4.5	
Parcel 2	79.9	1.4	74.2	2.9	1.5	
Parcel 3	114.2	8.0	7.2	65.1	33.8	
Parcel 4	1.6	0.5	0.9	0.0	0.2	
Parcel 5	2.0	0.6	1.3	0.1	0.0	
Parcel 6	75.3	1.8	12.9	46.7	13.9	
Parcel 7	2.6	0.2	1.2	0.0	1.2	
Parcel 8	2.6	0.3	1.9	0.0	0.4	
Parcel 9	34.2	1.2	26.9	0.0	6.0	
Parcel 10	39.3	2.3	5.7	29.1	2.3	
Parcel 11	7.1	3.1	1.6	2.5	0.0	
All Other Parcels	5,216.7	1,453.8	1,609.8	1,588.0	565.0	

Alternative Apporitionment: Changes in Cost (w/o Mgmt)

For this example, a model was set up and the following results were obtained:

Model Set Up

Model Results

- Annual fees cover the removal of sediment loading from the whole 887-parcel drainage watershed.
- There are 2,139 tons/year of modeled soil loss from the whole drainage watershed.
- Excavation costs \$30/yd³ to remove the sediment.
- Annual drain cleanout costs about \$64,150.

	e Cost for Standard tionment Method		Per Acre Average Cost for Alternative Apportionment Method			
	Standard Method Acres	Natural Acres	Grass/Hay/ Pasture Acres	Row Crop Ag Acres	Developed Acres	
Poorly Drained Soil	\$10.06	\$5.81	\$11.15	\$21.61	\$23.23	
Well Drained Soil	Ş10.06	\$5.81	\$6.27	\$12.08	\$13.01	

Each of the 887 parcels also pays a \$5.00 Base Fee to cover benefits accrued equally (regardless of parcel size), such as administration (mailings, publications, staff time, etc.), transportation and public health.

Standard and Alternative Drain Apportionment Comparison

- The figure at right shows annual project fees for the sample parcels under the standard and alternate apportionment methods. This simplified sample considers 11 parcels in a larger, 887-parcel Michigan county drain.
- The Alternative Method involves changing the fee structure from a straight acre basis to a need, use and management basis.
 - Need = poorly drained vs. well drained soils
 - Use = land uses with different contributions to the drain
 - Management = conservation practices (BMPs) on row cropped land
- In this figure, the fee goes down for some parcel owners with mostly natural or grass/hay/pasture land use, and up for some parcel owners with mostly developed or row crop land use.
- No Management practices have been accounted for yet.

Drain Apportionment Cost

Alternative Apporitionment: Sediment Reduction w/ BMPs

Model Set Up

- Modeling was used to determine baseline sediment loading and the effectiveness of BMPs.
- The Management Factor (BMPs) is only modeled for Row Crop Ag Land.
- The whole drainage watershed has 1,928 acres of Row Crop Ag land.
- Parcel 1 has 193.6 acres of Row Crop Ag land.
- If *Parcel 1* installs a buffer strip (BMP) sediment loading decreases by 111 tons/year and a Management discount factor is used to recalculate apportionment.

Model Results for BMP Implementation across the whole drainage watershed

BMP Adoption Rate for Row Crop Acres	Sediment Loading for Row Crop Acres (tons/year)
0 %	2,139
5 %	2,098
10 %	2,057
20 %	1,976
30 %	1,895
40 %	1,814
50 %	1,733

Data for Standard Apportionment Method Example Percentages

Data for Alternative Apportionment Method Example Percentages

	Standard MethodAnnual CostAnnual Percent		Alternative Method		Alternative Method with BMPs	
			Annual Cost	Annual Percent	Annual Cost	Annual Percent
Parcel 1 (361 ac)	\$3,638	6.08%	\$4,444	7.43%	\$3,344	5.59%
Parcel 2 (80 ac)	\$808	1.35%	\$587	0.97%	\$599	0.99% 🔶
Parcel 3 (114 ac)	\$1,154	1.92%	\$1,500	2.50%	\$1,530	2.55%
Parcel 4 (1.6 ac)	\$21	0.03%	\$20	0.02%	\$20	0.03% 🔶
Parcel 5 (2 ac)	\$25	0.03%	\$32	0.05%	\$33	0.05%
Parcel 6 (75 ac)	\$762	1.27%	\$880	1.46%	\$897	1.49%
Parcel 7 (2.6 ac)	\$32	0.04%	\$23	0.03%	\$23	0.03%
Parcel 8 (2.6 ac)	\$31	0.04%	\$28	0.04%	\$28	0.04%
Parcel 9 (34 ac)	\$349	0.58%	\$267	0.44%	\$273	0.45%
Parcel 10 (39 ac)	\$401	0.66%	\$548	0.91%	\$559	0.93%
Parcel 11 (7.1 ac)	\$77	0.12%	\$110	0.18%	\$113	0.18%
All Other Parcels	\$56,857	87.88%	\$55,715	85.97%	\$56,737	87.67%

Parcel 1 has a lot of developed and row crop land with some poorly drained soil so that owner pays more until applying BMPs. Parcel 2 is mostly grass/hay/pasture on well drained soil so that owner pays less. For smaller parcels like Parcel 4 at 1.6 total acres, differences may be quite small.

Row Crop Ag Acres are eligible for reduced fees if Conservation Practices (BMPs) are installed.

St. Joseph River Basin Commission

SJRBC

227 W. Jefferson Blvd. 1120 County-City Bldg. South Bend, IN 46601

www.sjrbc.com

Contact: Matt Meersman BasinDirector@macog.com 574.287.1829 ext.800