How to improve the functionality and resilience of constructed wetlands

Jason Martin, PhD
Senior Ecologist
Environmental Services Division
Kleenco Maintenance & Construction
Introduction

- Background and justification
- Local to landscape multiscale evaluation of wetland integrity
- Conclusions & next steps
Background

What is “compensatory mitigation”?

• Clean Water Act regulates impacts to natural wetland habitat

• Mandates replacement of *functionality*

• Preference for mitigation located at impacted site; typically in development zone
Background
Background
What is “compensatory mitigation”?

- “Success” defined using measurable performance standards:
 - % survivorship of planted species
 - % cover of native and/or invasive plants
 - % cover obligate/facultative wetland plants
Background

What is “compensatory mitigation”?

- “Success” defined using measurable performance standards:
 - % survivorship of planted species
 - % cover of native and/or invasive plants
 - % cover obligate/facultative wetland plants

- Performance standards not tied to replacement of functionality
Background

What is “compensatory mitigation”?

- Structure is not a precursor to wetland functionality
- Functionality gives rise to and maintains structure
Background

Does wetland mitigation work?

- Only 30% of wetlands constructed in IL meet all compliance goals (Matthews & Endress, 2008)
- Up to 87% of wetlands constructed in Indiana fail (IDEM, 2001)
- Planted vegetation doesn’t grow; dominant vegetation weedy exotic species (Matthews & Endress, 2008)
Background

Does wetland mitigation work?
Context is the key to functionality
Context is the key to functionality
Background

What is the role of landscape context?
Hypothesis

Constructed wetlands in natural landscapes have greater ecological functionality than those in urbanized or agricultural landscapes.

- Reflected in chemistry, vegetation, and macroinvertebrates

Ecological functionality = regulatory compliance and long-term maintenance efficiencies
Methods

Study sites

- 19 total sites (12 in 2017, 16 in 2018)
- All > 5 years old
- All “successful”
- Basin sizes: 0.1 – 2.5 ha (avg. = 1 ha)
Methods

Landscape-scale metrics

• 2-km buffers around each study wetland

2011 Land Cover & Canopy Closure

• % Forest
• % Agriculture
• % Developed (excluding open space)

National Wetlands Inventory

• Total area of wetlands
• Distance to nearest wetland
• Mean and median wetland area
• Total # wetlands
Methods

Study sites

- Selected across gradient of landscape contexts
Methods

Other data

Soil chemistry
- 2018 – 6 cores per wetland; homogenized
- % Organic matter, pH, P, K, Mg, Ca, S, Zn, Mn, Fe, Cu, B, Cl

Water chemistry
- 2017-2018 – Collected 9 times per wetland per year
- pH, NO₃, PO₄, Cl

Vegetation
- Meander survey & modified Braun-Blanquet method

Macroinvertebrates
- 2-min sweep net collection in emergent & submerged vegetation zones (standardized sample areas)
- 6 zones per wetland
- Individuals identified to taxonomic Family
Chemistry effects on wetland vegetation

Organic Matter

\[y = -0.22x + 8.02 \]

\[R = 0.45 \]

\[p = 0.01 \]

Zinc

\[y = -0.41x + 13.16 \]

\[R = 0.44 \]

\[p = 0.01 \]

Chloride

\[y = -18.48x + 604.2 \]

\[R = 0.31 \]

\[p = 0.03 \]
Results

Chemistry effects on macroinvertebrates

Zinc

\[y = -0.35x + 13.61 \]

\[R = 0.22 \]

\[p = 0.07 \]

Chloride

\[y = -2.56x + 332.8 \]

\[R = 0.31 \]

\[p = 0.04 \]

Chloride

\[y = -5.45x + 354.2 \]

\[R = 0.20 \]

\[p = 0.09 \]
Results

Wetland vegetation effects on macroinvertebrates

![Graph showing the relationship between submerged vegetation richness and macroinvertebrate family richness. The equation is $y = 1.77x + 16.18$, with $R = 0.22$ and $p = 0.08$.]

- Submerged Vegetation Richness
- Macroinvertebrate Family Richness

- $y = 1.77x + 16.18$
- $R = 0.22$
- $p = 0.08$
Results

Surface runoff effects on chemistry

Soil Chloride

- Parking Lot: 500 ppm ±SE
- Natural Watershed: 100 ppm ±SE

* t=3.56, p=0.01

Soil Zinc

- Parking Lot: 8 ppm ±SE
- Natural Watershed: 2 ppm ±SE

* t=2.03, p=0.04
Results

Landscape-scale Influence on wetland vegetation

- **Obligate Wetland Vegetation**
 \[y = -0.14x + 20.01 \]
 \[R = 0.29 \]
 \[p = 0.04 \]

- **All Wetland Vegetation (≥FAC)**
 \[y = -0.15x + 25.16 \]
 \[R = 0.22 \]
 \[p = 0.08 \]

- **Submerged Vegetation**
 \[y = -0.05x + 5.54 \]
 \[R = 0.31 \]
 \[p = 0.03 \]
Results

Landscape-scale Influence on wetland vegetation

\[
y = 0.74x + 10.08 \\
R = 0.21 \\
p = 0.08
\]
Conclusions & Next Steps

• Urban landscape stressors (e.g., parking lot runoff carrying zinc & chloride) negatively impact functionality of mitigated wetlands
Conclusions & Next Steps

- Urban landscape stressors (e.g., parking lot runoff carrying zinc & chloride) negatively impact functionality of mitigated wetlands

- Constructed wetlands located in more natural landscape contexts seem to support greater biodiversity
Conclusions & Next Steps

- Urban landscape stressors (e.g., parking lot runoff carrying zinc & chloride) negatively impact functionality of mitigated wetlands
- Constructed wetlands located in more natural landscape contexts seem to support greater biodiversity
- This suggests that landscape context is important when selecting locations of new mitigation sites
Conclusions & Next Steps

- Urban landscape stressors (e.g., parking lot runoff carrying zinc & chloride) negatively impact functionality of mitigated wetlands.

- Constructed wetlands located in more natural landscape contexts seem to support greater biodiversity.

- This suggests that landscape context is important when selecting locations of new mitigation sites.

- Knowledge of landscape context can also help guide creation of management goals and prioritize management action.
Conclusions & Next Steps

- Continued data collection in 2019 at 7 new sites
- High intensity chloride monitoring in 8 vegetated stormwater ponds (2019-2020)
Conclusions & Next Steps

• Create predictive spatial model for:

 – Selecting locations for wetland mitigation projects that have highest likelihood of achieving regulatory compliance
Conclusions & Next Steps

• Create predictive spatial model for:

 – Selecting locations for wetland mitigation projects that have highest likelihood of achieving regulatory compliance

 – Guiding and prioritizing management actions of existing constructed wetlands and allocation of related resources
Logistical support and site access provided by Walmart Inc., Michigan Department of Environmental Quality, Michigan Department of Transportation, Dundee Township (IL), and Openings Wetland Mitigation Bank.

Special thanks to Manchester University: Dr. Suzanne Beyeler, Nolan Sipe, Tristan Barley, Josh Melton, Corey Rowland, and Amy Weeks

Jason Martin
Kleenco Environmental Services
martinja@kleencousa.com