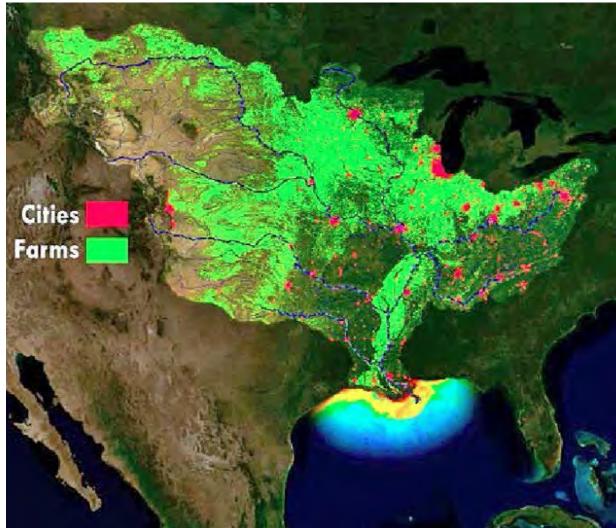
Constructed Wetlands to Reduce Nutrients From Cropland Runoff: IMPLICATIONS FOR URBAN STORMWATER

INAFSM | September 6, 2018

Al Walus Dave Buckley, PE, CFM, CPSWQ Mahsa Izadmehr, PhD Candidate

PROJECT OVERVIEW:


Using the Farmable Wetland Program under the U.S. Department of Agriculture's Conservation Reserve Program (CP-39):

The Wetlands Initiative (TWI) has successfully facilitated the design and construction of a wetland treatment located on a private farm in north central Illinois.

The project included two monitoring locations, at the inflow and outflow, allowing for the measurement of nutrient concentrations throughout the growing seasons and periods of dormancy.

Why are we doing this?

- Nutrient runoff is primarily responsible for the annual "dead zone" in the Gulf of Mexico and large algal blooms in parts of the Great Lakes.
- Row-crop agriculture is the biggest source of nutrients.
- Gulf of Mexico Hypoxia Action Plan
 - Requires all watershed states to develop a plan to reduce their nutrients.
- Illinois Nutrient Loss Reduction Strategy
 - Address point-source, urban runoff, and agricultural runoff

Illinois Nutrient Loss Reduction Strategy

- Using strategies from other states, Illinois sought input from major agricultural commodity organizations to support the strategies identified.
 - Illinois Farm Bureau
 - Fertilizer and Chemical Association
 - Corn Growers Association

Improving our water resources with collaboration and innovation

Nutrient pollution is a major threat to water quality in Illinois. Over the decades, state and local efforts to control nutrients have yielded positive results, but new strategies are needed to improve the effectiveness of existing water quality programs and secure the long-term health of water bodies in Illinois and throughout the Mississippi River Basin.

What is nutrient pollution?

Plants and animals need nitrogen and phosphorus to survive. But when too much of either is carried in runoff from city streets and farm fields or flows out of wastewater treatment plants, it can fuel algal blooms that decrease oxygen needed by aquatic plants and animals. In the Gulf of Mexico, nutrients washed down by the Mississippi River have created a 'dead zone' that covers thousands of square miles. Algal blooms also lower property values, hinder recreation, and threaten public health. In addition, nutrient pollution can degrade drinking water quality and require utilities to install costly treatment equipment.

> What is Illinois doing to address

the problem? To help protect local streams and the Gulf,

Illinois and 11 other states in the Mississippi River Basin have pledged to develop strategies to reduce the nutrient loads

leaving their borders.

These strategies are part of a national plan developed by the Mississippi River, Gulf of Mexico Watershed Nutrient Task Force to reduce the size of the Gulf of Mexico hypoxic zone.

The Illinois Nutrient Loss Reduction Strategy builds on existing efforts by state and local governments, as well as non-profits and industry, to protect and restore Illinois waterways.

Key Strategy Components

- 1. Extends ongoing regulatory and voluntary efforts
- 2. Identifies priority watersheds for nutrient loss reduction efforts
- 3. Establishes the Nutrient Monitoring Council to coordinate water quality monitoring efforts by government agencies, universities, non-profits, and industry
- 4. Creates the Nutrient Science Advisory Committee to develop numeric nutrient criteria for Illinois waters
- 5. Forms the Agricultural Water Quality Partnership Forum to oversee outreach and education efforts
- 6. Establishes the Urban Stormwater Working Group to coordinate and improve stormwater programs and education
- Lays out strategies for improving collaboration among government, non-profits, and industry
- Defines a process for regular review an revision

Illinois Nutrient Loss Reduction Strategy

What is Illinois doing to address the problem?

To help protect local streams and the Gulf, Illinois and 11 other states in the Mississippi River Basin have pledged to develop strategies to reduce the nutrient loads leaving their borders. These strategies are part

of a national plan developed by the Mississippi River, Gulf of Mexico Watershed Nutrient Task Force to reduce the size of the Gulf of Mexico hypoxic zone.

The Illinois Nutrient Loss Reduction Strategy builds on existing efforts by state and local governments, as well as non-profits and industry, to protect and restore Illinois waterways.

Illinois Nutrient Loss Reduction Strategy: Key Strategy Components

- 1. Extends ongoing regulatory and voluntary efforts
- 2. Identifies priority watersheds for nutrient loss reduction efforts
- 3. Establishes the Nutrient Monitoring Council to coordinate water quality monitoring efforts by government agencies, universities, non-profits, and industry
- 4. Creates the Nutrient Science Advisory Committee to develop numeric nutrient criteria for Illinois waters

- 5. Forms the Agricultural Water Quality Partnership Forum to oversee outreach and education efforts
- 6. Establishes the Urban Stormwater Working Group to coordinate and improve stormwater programs and education
- 7. Lays out strategies for improving collaboration among government, non-profits, and industry
- 8. Defines a process for regular review and revision

Illinois Council on Best Management Practices "What's your Strategy"

- Illinois Council's website is the one-stop hub
- The Council focuses on a system of practices, with no single best management practice

EVENTS

NEWS

BEST MANAGEMENT PRACTICES

NUTRIENT LOSS REDUCTION STRATEGY

WHAT ILLINOIS FARMERS ARE DOING

WATER TESTING

PRIORITY WATERSHEDS

AGRICULTURE & CONSERVATION ORGANIZATIONS

CONSERVATION PROGRAMS & TOOLS

NUTRIENT RESEARCH & EDUCATION COUNCIL

BEST MANAGEMENT PRACTICES

Illinois' Nutrient Loss Reduction Strategy (NLRS) characterizes best management practices (BMPs) for agriculture into three categories: In field, Edge-of-field, and Land Use Changes.

The NLRS included BMPs that have been proven to reduce nutrient losses in peer-reviewed, published research. Those practices are noted here with an *. This website also includes information about additional BMPs that can be used by farmers here in Illinois, many of which are being tested in ongoing research.

You can find information about Illinois' Demonstration Farms, where many of these practices are being researched and showcased, here.

IN FIELD:


- Nitrogen management *
- Cover crops *
- Reduced tillage *

EDGE-OF-FIELD:

- Buffers *
- Saturated buffers
- Woodchip Bioreactors *
- Wetlands *
- Drainage Water Management
- Streambank Stabilization

LAND USE CHANGES:

Perennial/energy crops *

RECEIVE OUR E-NEWSLETTER

EVENTS

NEWS

BEST MANAGEMENT PRACTICES

NUTRIENT LOSS REDUCTION STRATEGY

WHAT ILLINOIS FARMERS ARE DOING

WATER TESTING

PRIORITY WATERSHEDS

AGRICULTURE & CONSERVATION ORGANIZATIONS

CONSERVATION PROGRAMS & TOOLS

NUTRIENT RESEARCH & EDUCATION COUNCIL

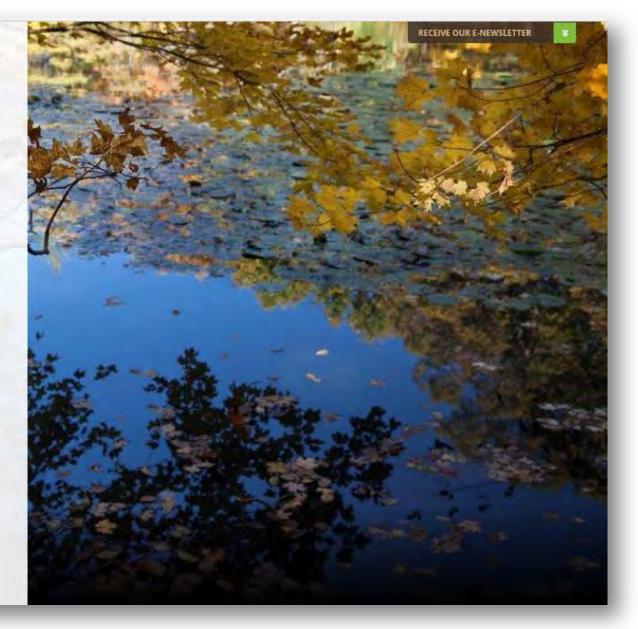
BEST MANAGEMENT PRACTICES

Illinois' Nutrient Loss Reduction Strategy (NLRS) characterizes best management practices (BMPs) for agriculture into three categories: In field, Edge-of-field, and Land Use Changes.

The NLRS included BMPs that have been proven to reduce nutrient losses in peer-reviewed, published research. Those practices are noted here with an *. This website also includes information about additional BMPs that can be used by farmers here in Illinois, many of which are being tested in ongoing research.

You can find information about Illinois' Demonstration Farms, where many of these practices are being researched and showcased, here.

IN FIELD:


- Nitrogen management *
- Cover crops *
- Reduced tillage *

EDGE-OF-FIELD:

- Buffers *
- Saturated buffers
- Woodchip Bioreactors *
- Wetlands *
- Drainage Water Management
- Streambank Stabilization

LAND USE CHANGES:

Perennial/energy crops*

WHAT'S YOUR STRATEGY?

The Illinois Nutrient Loss Reduction Strategy Illinois farmers across the state share their conservation stories

BMPs > Partners > About > <u>Calendar</u> Expo shows wetland built for nutrient loss

reduction

Farmer/Landowner: Thacker Farms Organizations Involved: The Wetlands Initiative, IL LICA, NRCS, FSA, IL Corn Growers Association Programs utilized: Conservation Reserve Program (CRP) cost-share Best Management Practice(s):

Constructed Wetland

Description: Bureau County's first constructed wetland for cropland tile drainage treatment was installed at Thacker Farms during a three-day field expo held August 4-6, 2015. This practice is designed to reduce nutrient losses by siting a small wetland along a stream or drainage way where it can intercept tile line(s) and naturally remove excess nutrients. Nearly 100 people from

WHAT'S YOUR STRATEGY?

Ann Arbor

Farmer/Landowner: Thacker Forms

Description: Bureau County's first constructed wetland for cropland tile drainage treatment was installed at Thacker Farms during a three-day field expo held August 4-6, 2015. This practice is designed to reduce nutrient losses by siting a small wetland along a stream or drainage way where it can intercept tile line(s) and naturally remove excess nutrients. Nearly 100 people from 13 counties attended the expo to learn about the wetland and other conservation practices hands-on.

nutrients. Nearly 100 people from

esri

BEST MANAGEMENT PRACTICES

NUTRIENT LOSS REDUCTION

WHAT ILLINOIS FARMERS ARE

ABOUT US

EVENTS

NEWS

STRATEGY

DOING

WATER TESTING

ORGANIZATIONS

TOOLS

PRIORITY WATERSHEDS

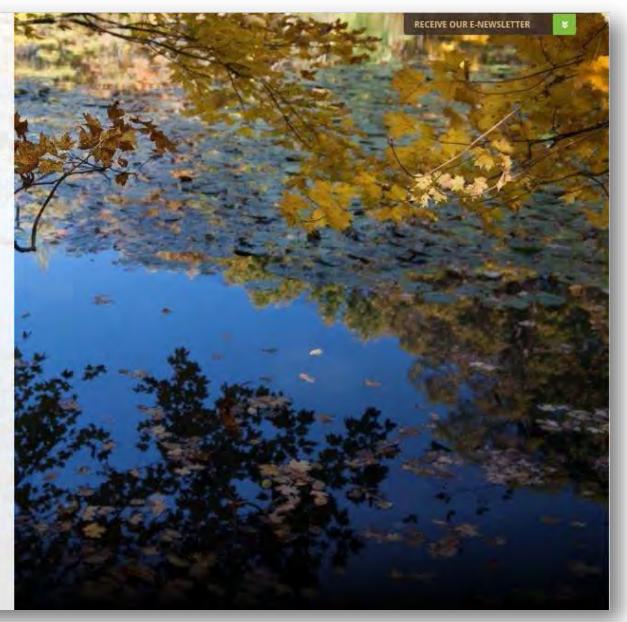
AGRICULTURE & CONSERVATION

CONSERVATION PROGRAMS &

http://illinoiscbmp.org/ EDUCATION

a

CONSTRUCTED WETLANDS


A wetland is a marsh-type area with saturated soils and water-loving plants. Wetlands can be constructed for the purpose of removing nutrients because they filter nutrients, chemicals, and sediment from runoff or tile water before water moves off of a farm field and into streams and rivers. Because wetlands slow overland flow and store runoff water, they reduce both soil erosion and flooding downstream. Many wetlands release water slowly into the ground which recharges groundwater supplies.

Wetlands provide habitat for waterfowl and many other species of wildlife, as well as add beauty and value to a farm. Wetlands can be built or enhanced by installing practices such as dikes to manage water levels.

Wetlands targeted for water quality benefits show great potential for nitrate-N reduction. Wetland costs include design, construction, buffer seeding, maintenance and land acquisition. In addition to water quality benefits, these wetlands provide other benefits such as improved aesthetics and habitat.

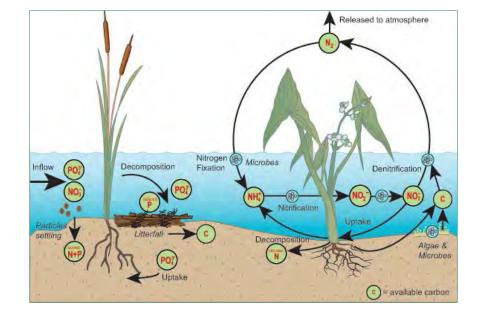
Nature's Kidneys: The Illinois Water Resources Center discuss how constructed wetlands filter nitrogen and benefit wildlife in the video below.

Current Conditions:

We need **both** fertilizer and drainage for productive farming.

One of the least expensive ways to address nutrient runoff is through the rate and timing of fertilizer applications.

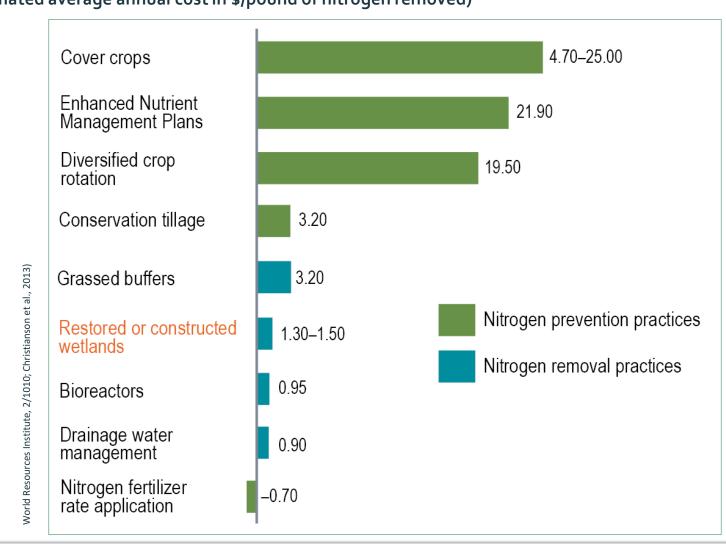
However, even the most careful farmer can't avoid some nutrient loss. This is largely due to the drain tile system.


The drain tile has been a critical aspect to farming since the mid-19th century responsible for making planting and harvesting more consistent and reliable from year to year.

The drain tile acts as a transport vehicle, allowing field drainage of excess water to carry nutrients with it, including nitrates.

Cropland Treatment Practices – BMPs

- We can achieve significant nitrate reduction by treating nutrients leaving the field through drain tiles with:
 - Vegetated Buffers
 - Bioreactors
 - Constructed Wetlands


Constructed Wetlands

Specifically located and designed for a particular drainage area for the purpose of intercepting drain tile drainage to reduce nutrients before reaching a receiving waterway.

Optimize the natural process to remove nutrients.

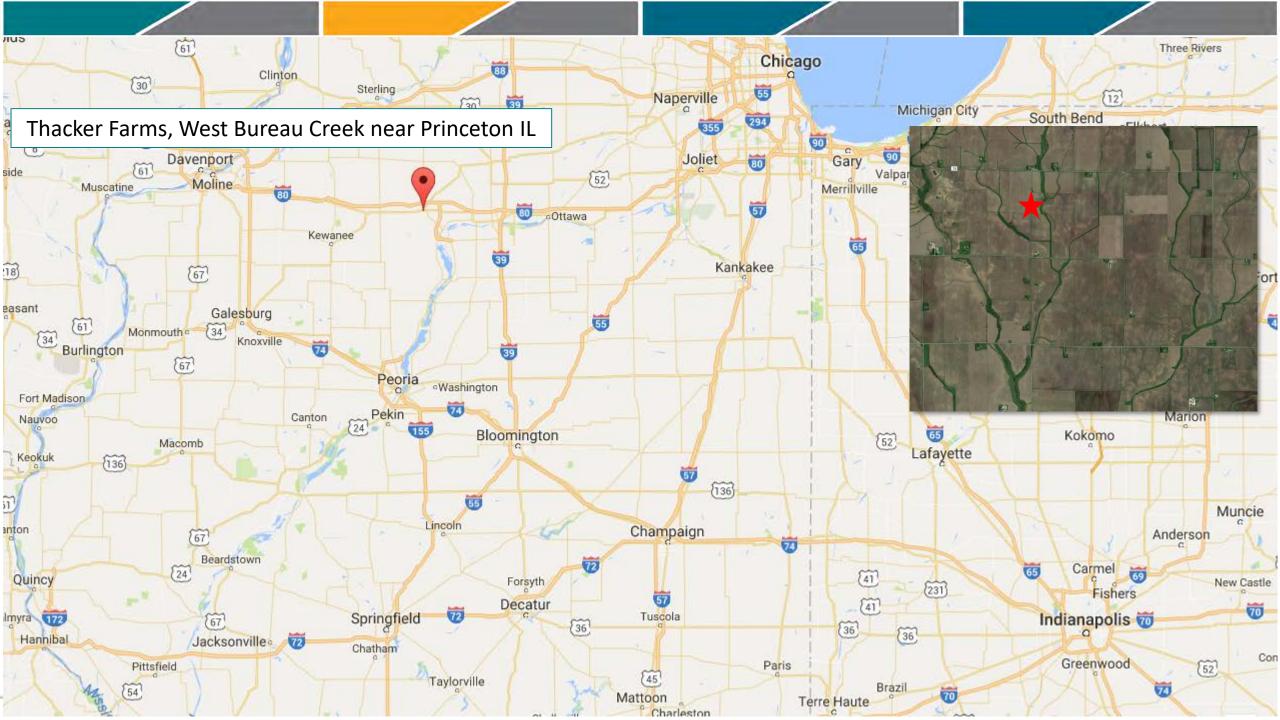
"Working wetlands" are one of the most promising practices for reducing nutrient loss.

Comparison of nitrogen removal cost-effectiveness for select agricultural practices (estimated average annual cost in \$/pound of nitrogen removed)

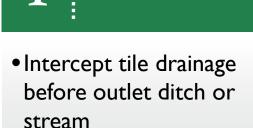
IAFSM

Constructed Wetland

- Densely vegetative marsh versus open water
- Vegetation is critical to slow water down while providing substrate for working microbes
- 50 year functionality with very low maintenance
- Provides environmental benefits
 - Pollinator habitat
 - Wildlife habitat
 - Carbon sequestration


Buy-In and Cost Share Strategy

- The Wetlands Initiative works with farmers (1 on 1) to promote interest.
 - TWI is a non-profit organization dedicated to restoring the wetland resources of the Midwest.
 - Land owner confidence that the practice will work.
 - Local buy-in, trusted farm leaders.
 - Minimizing impacts to farming operations.
 - Implemented in often low producing areas of the farm.



INITIATIVE

- Not simply building a few wetlands and assume other farmers will copy and take action.
 - TWI is spreading the practice within the real-life economics of the working Farm Belt.
 - TWI wants to prove this type of on-the-ground conservation is not some little boutique thing but a normal part of the working farm-belt landscape just like nutrient management, grassed waterways or drainage ditches.
- Federal cost share programs \rightarrow Farm Service Agency
 - Offset the cost for this practice while reducing investment in less-profitable land.
 - EQIP Environmental Quality Incentives Program
 - CRP Conservation Reserve Program
 - Is the project eligible
 - NRCS must approve the design.

POSITION

- Capture high nutrient loads
- Locate in watershed headwater areas
- Marginal or unprofitable land

•Key to nutrient removal

SIZE

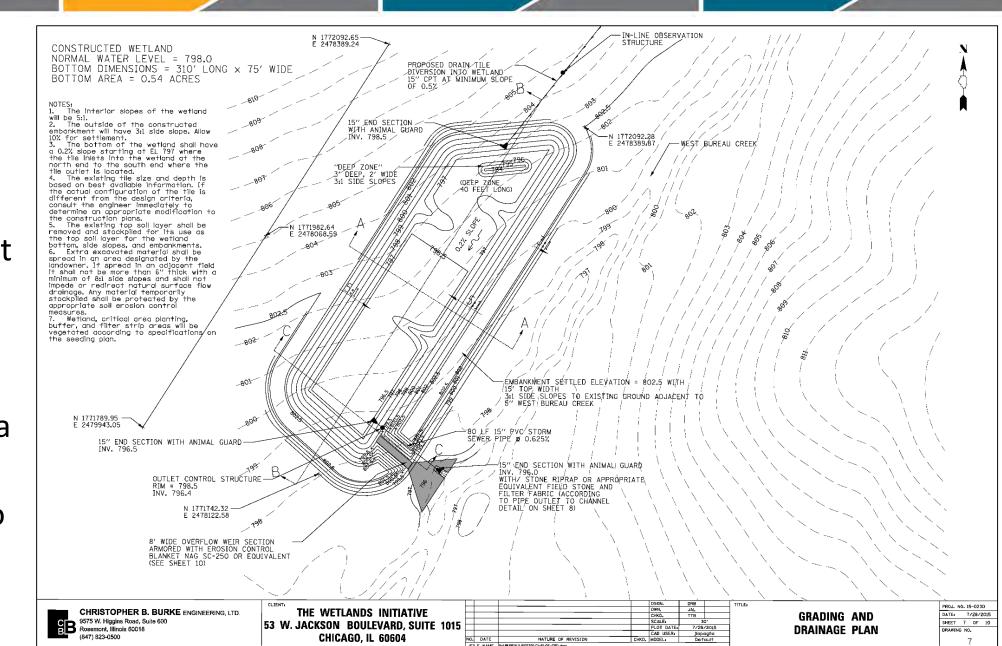
- Allow adequate residence time
- Treatment area is 0.5-5.0% of the drainage area
- Treatment area is 12" above to 24" below permanent pool

- Marsh wetland (aka shallow "pond")
- At least 50% of the permanent (normal) pool is 12" or less

DEPTH

 Anything greater than 24" in depth doesn't count towards the ratio or treatment area

Design


NRCS Criteria

HMS Hydrologic Modeling

- SCS Methodology
- 25-yr, 24-hr
- Max velocity = 1.5 ft/sec
- 72-hr draw down; 10yr, 24-hr storm

Design

- Located adjacent to creek
- Inlet and outlet structures
- 40 acres of tributary area
- Treatment area is 0.5 acres
- Small berms to increase flow path

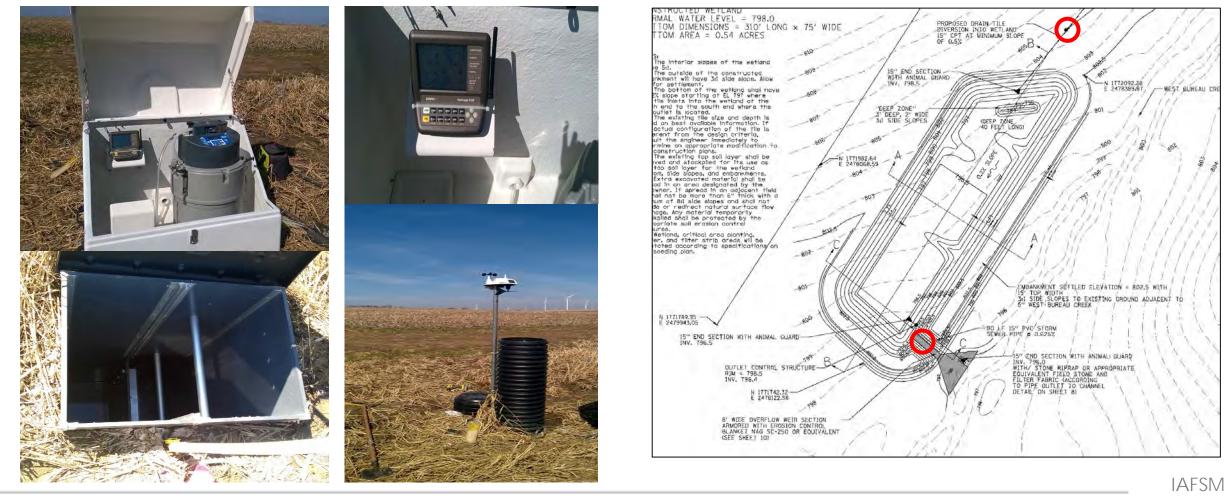
IAFSM

Planting Plan

- Total footprint is 4.3 acres
- Wetland area
- Different seed mixes each zone

In an effort to increase public awareness and education, TWI partnered with the IL chapter of the Land Improvement Contractors of America.

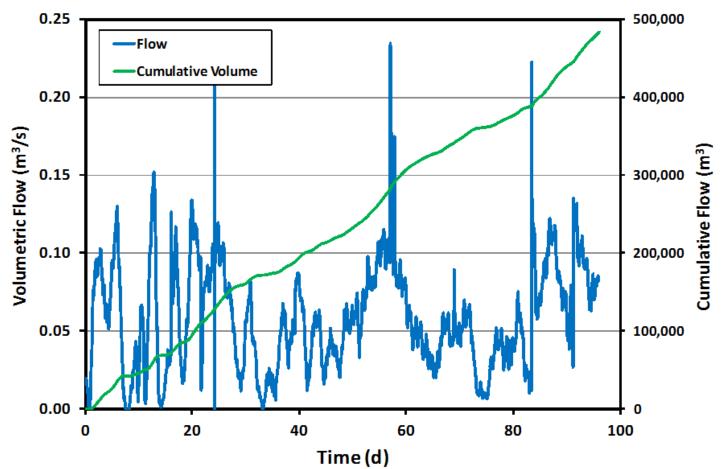
The wetland was built as part of ILICA's conservation expo that was held Aug 4-6th. The construction was between the 3nd- 8th.



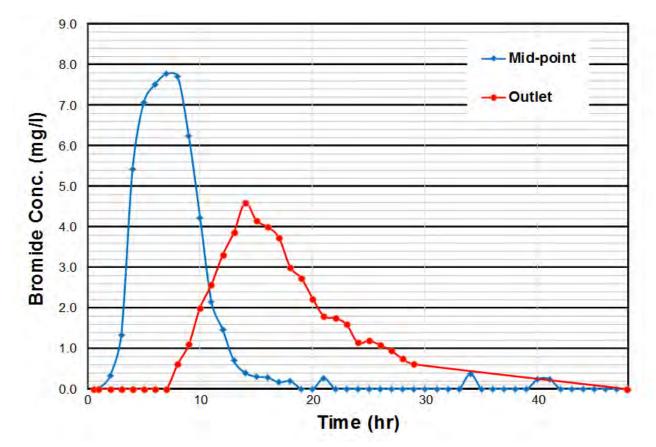
Embedded Video from 2015 Conservation Expo (Ohio, IL) has been removed from this presentation due to size limitations

Performance Monitoring by UIC Dept. of Civil and Materials Engineering

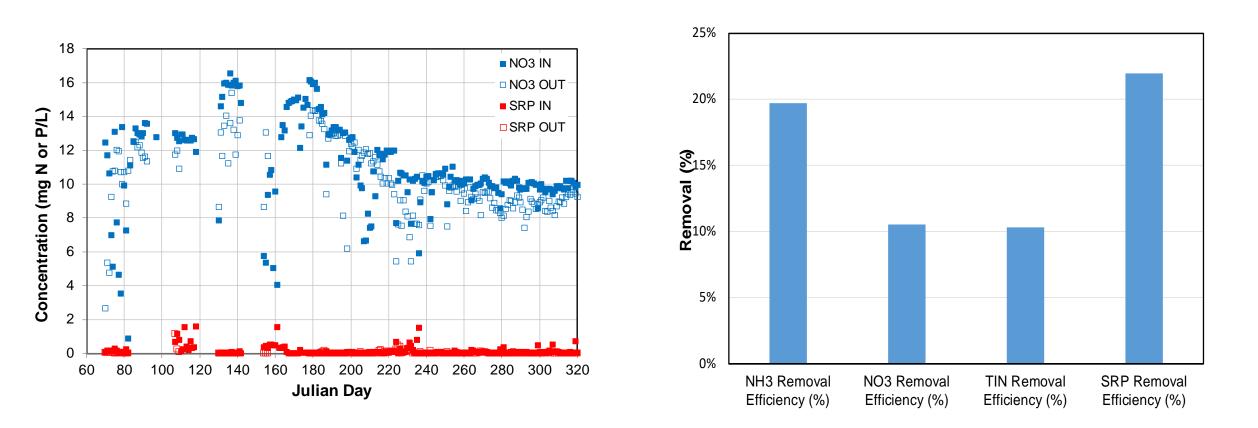
Sampling at Inflow and Outflow



Wetland water level controlled by outlet weir

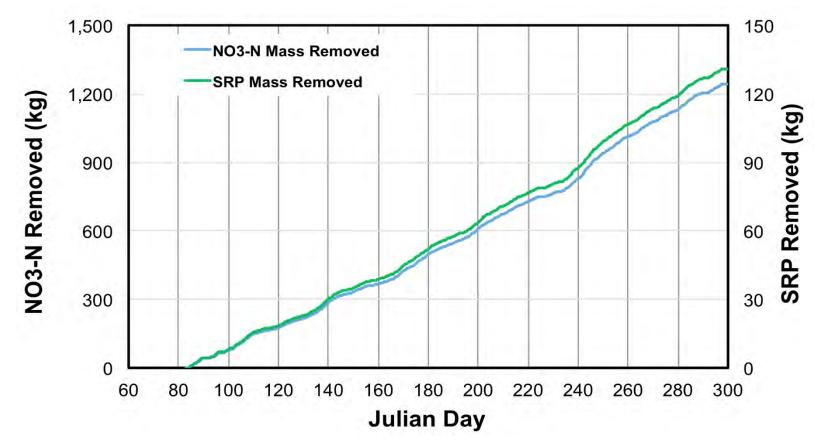

Flow calculated from known geometry and measured stage using the Francis weir equation

$$Q = 1.838 L H^{3/2}$$



Wetland Hydraulics: Tracer Study

- Bromide (Br⁻) tracer injected for 6 hrs at inlet
 - Sampling at wetland cell mid-point and the outlet control structure
 - Conductivity at 5 min intervals, Br⁻ at 1 hr intervals
 - Overall recovery was ~90%
- 1D Transport with Inflow and Storage (OTIS) model
 - No substantial short-circuiting
 - Substantial dispersion
 - Clear peak tailing in the outlet tracer
 - HRT = 17.5 ± 6.7 hr



P removal > N removal (on a % basis)

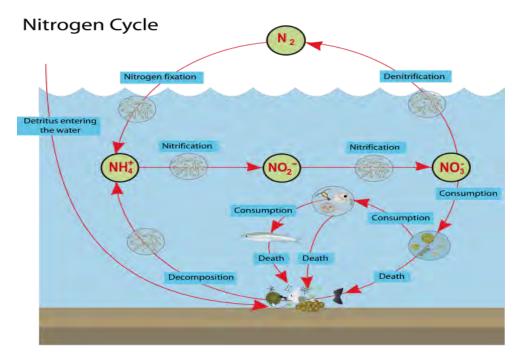
Overall, removal averaged 22% for SRP (Soluble Reactive Phosphorus), 10.6% for nitrate and 10.3% for TIN (Total Inorganic Nitrogen)

Cumulative N and P mass removal by the system

Based on the measured flowrates and inlet/outlet nutrient concentrations, the cumulative N and P removal was determined using a mass balance approach.

Approximately 120 kg of SRP and 1200 kg (1.3 tons) of NO3-N (Nitrate as Nitrogen)

Why was N removal efficiency low?

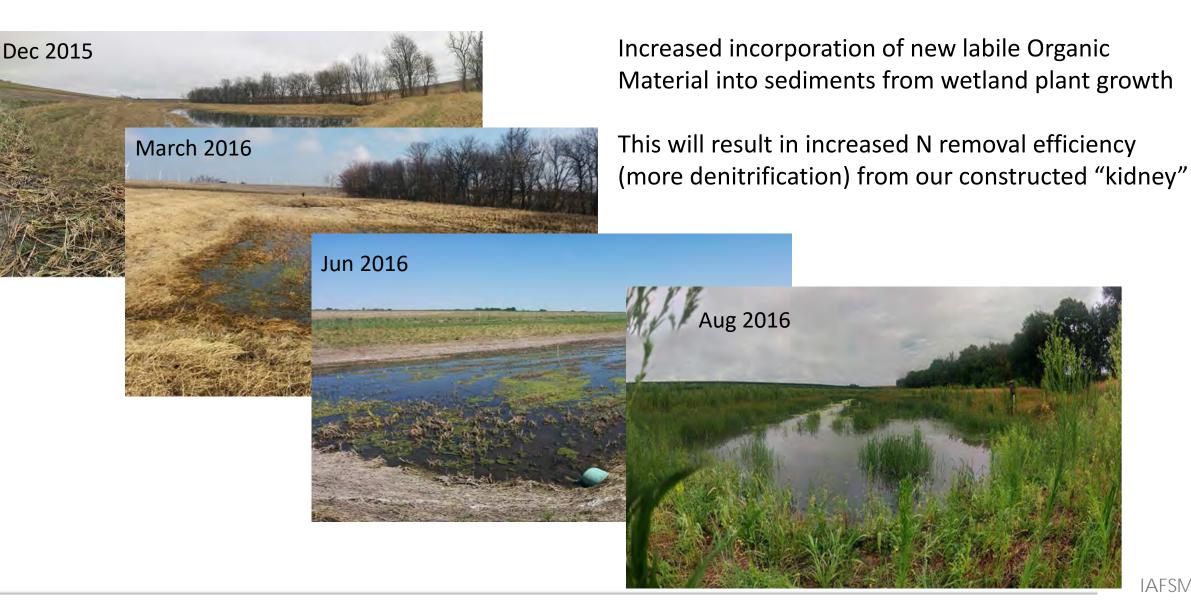

N removal is primarily through **denitrification of NO₃ to produce N₂**

Denitrification requires the presence of three (3) components simultaneously:

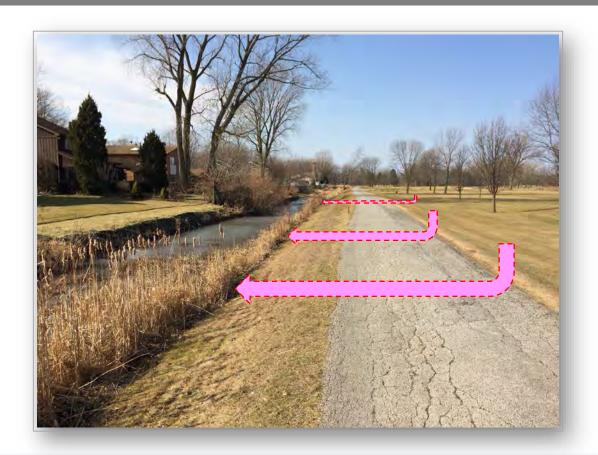
- 1. Electron Donors (simple organic compounds from breakdown of organic material)
- 2. Electron Acceptors (i.e. NO_3 from fertilizers and nitrification of NH_3) **NOT** AN ISSUE HERE!
- 3. Competent microbes to carry out the process (i.e. denitrifying bacteria)

Thus, possible reasons for lack of/low N removal include:

- 1. Lack of Electron Donors (not much organic material at start)
- 2. No or low levels of denitrifying bacteria present at start
- 3. Hydraulic overloading (Electron Acceptors overwhelms available Electron Donors)



Why was N removal low?


Investigating these one by one:

- 1. Lack of Electron Donors (plenty of Electron Acceptors!)
 - Although the sediment is ~4% Organic Material, this Organic Material may not be highly biodegradable and thus may not produce sufficient amounts of Electron Donors to match the Electron Acceptor load
 - Further monitoring of Organic Material levels will help determine whether they increase from wetland growth and development
- 2. Lack of competent microbial community structure
 - It is likely that denitrifying bacteria need time to adapt to the wetland conditions with abundant NO₃ levels
 - Further monitoring of N removal and microbial community structure analysis via 16S RNA sequencing is ongoing
- 3. Overloading (Electron Acceptors overwhelms available Electron Donors)
 - It is possible that the higher flowrates resulted in NO₃ overloading
 - 17.5 hr HRT in the tracer study was lower than we expected, resulting in less time for denitrification to occur
 - We expect possibly longer HRT now that the weir depth is fixed and wetland plants established

Wetland development: From planting to operation

Constructed Wetlands to Reduce Nutrients From Cropland Runoff: IMPLICATIONS FOR URBAN STORMWATER

Construction photos and thanks to all involved:

Conservation Expo 2015

August 4 – 6, 2015

