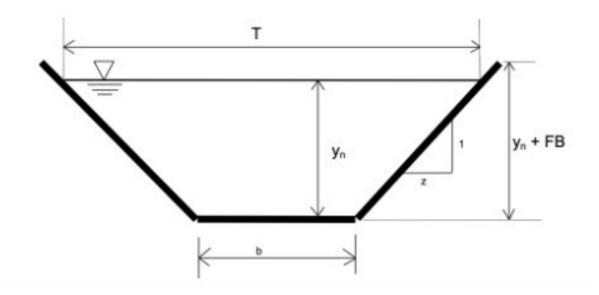


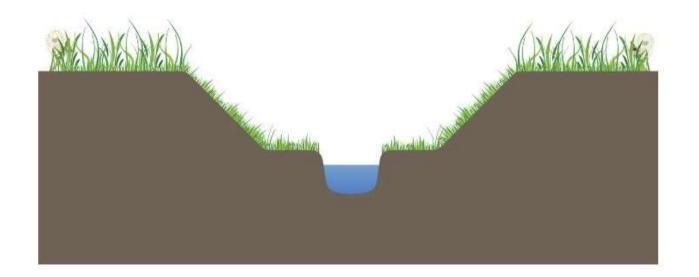
INAFSM 2023

Two-Stage Ditches for Flood Reduction and Water Quality Improvements

Presented by: Clark Dietz, Inc.
Brian Powers, P.E., CFM
Sam Robertson, P.E.

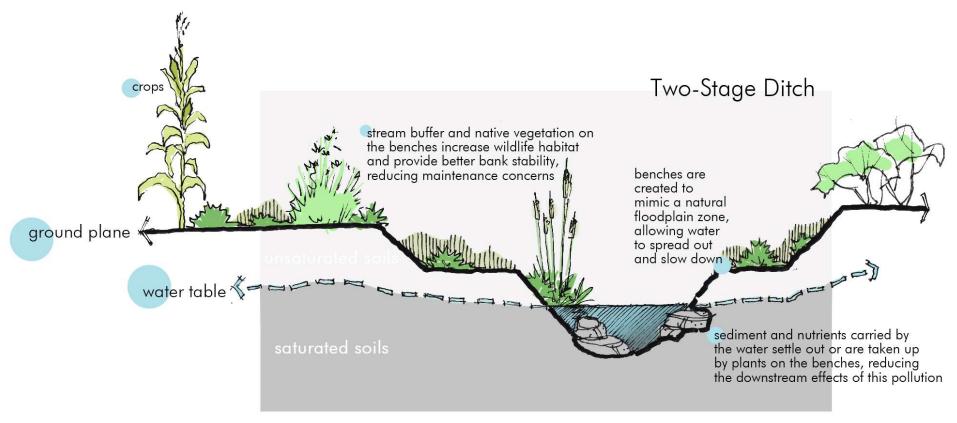
Is there anything in life better than a chocolate chip cookie?


YES, Two!



Is there anything better than a traditional drainage ditch?

YES, the Two-Stage Ditch



Introduction – Two Stage Ditches

- > Historically drainage channels have been designed for the primary purpose of conveyance which has resulted in large trapezoidal shaped channels.
 - Typically accommodates 5-year to 100-year recurrence intervals

What is a two-stage ditch?

Source: Greenwood, Indiana

Introduction - Agenda

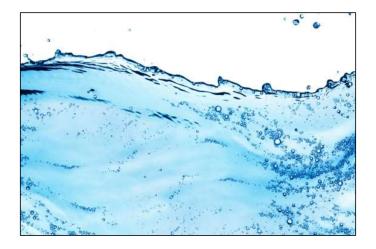
- Advantages of the two-stage ditch
 - Water Volume Storage
 - Water Quality
 - Permitting Advantages
- > Pre-project Planning
- Design of a two-stage ditch
- > Project examples
- Additional resources

Advantages of the Two-Stage Ditch

Advantages of the Two-Stage Ditch

- Water Volume Storage
- Water Quality
- Increased Channel Stability
- > Reduced Maintenance
- Permitting Advantages

Water Volume Storage


- Additional watershed storage volume in channel to provide regional detention.
- > Reduces downstream flooding risk.
- > Slow and reduce peak discharges downstream.

Water Quality

- > Reduction in nutrient load.
 - There was a great presentation at last years conference that studied the effect of twostage ditches on agricultural waterways, showed increased biological nitrate removal, dissolved phosphorus retention, and reduced suspended sediments.

Increase Channel Stability

- The cross-sectional area of the channel flow is wider and more shallow.
- Channel geometry reduces the erosive potential of larger flows
- Sheer stress on the toe of the bank is reduced
- > Bench not exposed to low flow, resulting in a dryer surface better for vegetative growth.

Reduced Maintenance

- Side slopes and floodplain bench do not need to be mowed.
- Vegetative growth on the bench helps stabilize the channel while provide water quality benefits.
- Increased side slope stability reducing the probability of slopes needing to be reconstructed.

Permit Advantages

- Avoid disturbance to existing channel below the OHWM for Waters of the US.
- Vegetative plantings on the floodplain bench could potentially be accepted as mitigation.
- Converting a trapezoidal ditch to a two-stage ditch is looked at favorably by the permitting agencies.

Pre-Project Planning

What locations are good candidates for a 2-stage ditch?

- Channels upstream of flood prone areas
- Channels that receive a high nutrient load
- Steep unstable banks/erosion
- Areas with most impact on water quality
- Undersized field tiles/daylighting opportunities
- Watersheds preparing for future development
- Existing channel with a heavy maintenance requirement

Site Assessment

- Topography and landuse: Understand the lay of the land to determine if a twostage ditch is feasible.
 - ROW Concerns, roads, developments, wooded areas
- Proximity to Built Environment: Consider how close the stream is to roads, homes, or other infrastructure that could be impacted.
- Soil Type: Different soils have different infiltration rates and erosion risks.

Site Assessment

- Flow Patterns: Streams with highly variable flow patterns may benefit from a twostage ditch to manage both low and high flows.
- **Flood Frequency:** If the area is prone to frequent flooding, a two-stage ditch can help in floodplain management.
- Water Quality: Streams with poor water quality due to sedimentation or nutrient loading may be improved with a two-stage ditch.
- **Ecosystem Impact:** Consider how the ditch will affect local flora and fauna. The project should aim for a net positive or neutral impact.

Considerations

- Legal Restrictions/Easements: Make sure there are no legal impediments to modifying the stream.
- Access: How with the site be accessed during construction?
- Permitting: Understand what permits will be required and how difficult they will be to obtain.
 - IDNR Construction in the Floodway?
 - IDEM Water Quality Certification?
 - IDEM General Construction Stormwater Permit (yes)
- Budget: Construction cost considerations, Purchase of easements
- Schedule: How the site will be accessed, Will tree removal be required

How to Design a Two-Stage Ditch

Design Overview

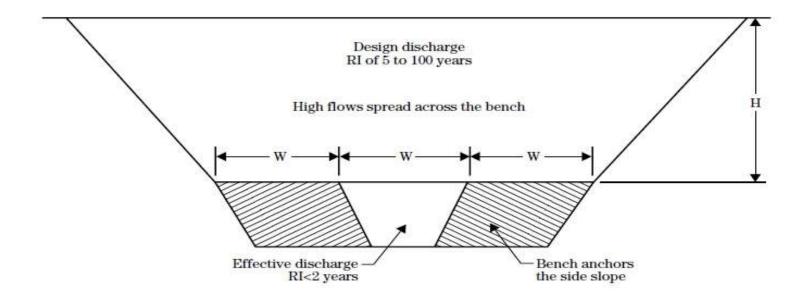
- 1. Evaluate site
 - Easement limits
 - Topography
 - Access
- 2. Complete a topographical survey of the channel
- 3. Perform Wetland Delineation
- 4. Perform geotechnical analysis/soil borings
- 5. Evaluate the Hydrology of the watershed
- 6. Calculate Channel Geometry
- 7. Prepare Construction Documents
- 8. Public Outreach

Field Investigations

- Topographical Field Survey
 - Channel slopes and geometry
 - Utilities
 - Property and easement limits
 - Large trees (larger than 4")
- Geotechnical Investigation/Soil Borings
 - Especially if rock is believed to be encountered
- Wetland Investigations/Waters Report
 - Know where your wetlands are and plan your design around them.

Hydrologic Assessment

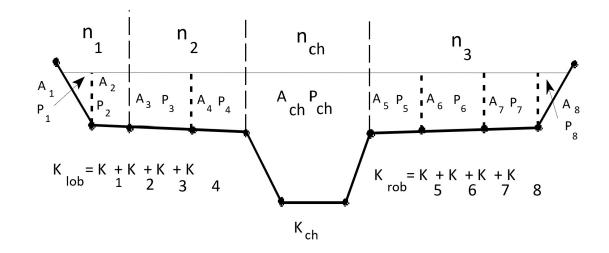
Indiana Design Manual


Facility Description	Methodology					
	Rational Method*	TR-20 or HEC-HMS	IDNR Coordinated Curves	USGS Gaging Information	Stream Stats	Purdue Regression Equations
Culvert	2	2	1		3	
Bridge or Channel, < 5 sq mi drainage area	=	2	1	3	3	3
Bridge or Channel, ≥ 5 sq mi drainage area		3	1	2	3	3
Storm Drain and Inlets	1	4	 2		1. 	£
Storage Facility	5	1				
Pumping Station **		1				

Notes: Must use IDNR Discharge Letter if IDNR Permit is required.

Design of a Two-Stage Ditch

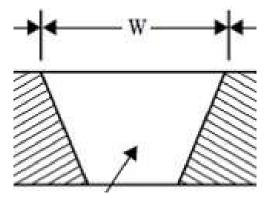
- 1. Low flow channel (recurrence interval <2 years)
- 2. Floodplain bench channel (recurrence interval 5 year to 100 year)


Design Tools and Calculations

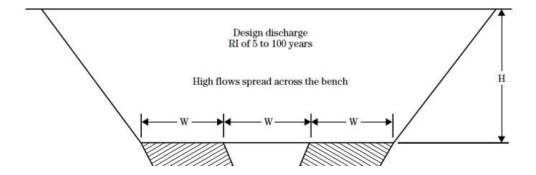
Design tools typically used

- USACE HEC-RAS
- Other software packages (SWMM, HY8, etc...)
- Spreadsheets and calculations

Information needed


- Peak flow values (2-yr, 10-yr, 100-yr)
- Slopes of the channel
- Land use (existing and proposed)
- Cross section geometry

Low Flow Channel Design


- Determine the dimensions of the low flow channel
 - The low flow channel will have alluvial properties, carry most of the sediment
 - Define the recurrence interval (typically 1 to 2 year event)
 - Calculate the required cross-sectional area
 - Height and width will be determined in the next step

Floodplain Bench Channel Design

- Determine the dimensions of the bankfull channel
 - Bench will act as a floodplain within the ditch
 - Establishment of dense grass cover
 - Side slopes and depths that satisfy geotechnical requirements
 - Bench width 3 X bankfull channel top width
 - Design dimensions for the calculated discharge (5 year to 100 year recurrence interval)

Prepare Grading Plan

- Prepare construction documents based on proposed geometry
 - Layout per designed geometry
 - Best done with AutoDesk Civil 3d or similar type program
 - Plan views, profile views, and misc. details
- Keep in mind changes during design and update model if needed:
 - Changes in channel geometry
 - Changes to slopes/elevations
 - If there is obstructions that restrict flow
- Evaluate changes that occur during design/const. and update calculations accordingly

Plan Vegetative Plantings

- Dense grass cover on the bench and side slopes
- Work with stakeholders to determine plantings preferred

Public Outreach

- Keep stakeholders informed
- Regular progress meetings with owner and engineer
- Other Stakeholders that may be interested:
 - Elected officials
 - Other municipalities
 - · Local parks department
 - Watershed residents and rate payers
 - · Emphasis adjacent and affected property owners
 - Contractors

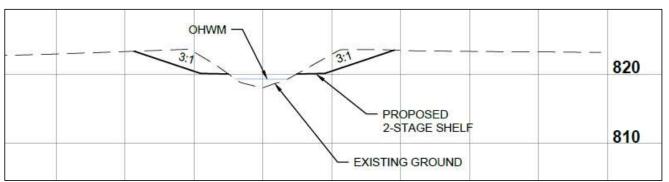
Permitting

Typical Agency Permitting Times

Agency	Permit Type	Month for Review of Application		
USACE	404 Individual Permit*	12-18 months		
USACE	404 Nationwide Permit	3 months		
USACE	404 Regional General Permit (RGP)*	4-6 months		
IDEM	401 with more than 0.1 acre or >300' of impacts	7 months		
IDEM	401 with less than 0.1 acre or >300' of impacts	4 months		
IDEM	Construction General Stormwater Permit (CSGP)	1-2 months		
IDEM	Isolated Wetlands*	7 months		
DNR	All permits types by DNR*	7-9 months		

^{*}Mitigation may be needed for permit application.

Application of Two-Stage Ditches

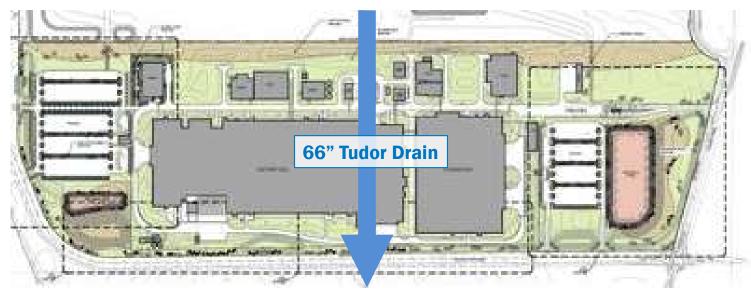

Johnson County Indiana

- Scott-Highbridge Legal Drain in Greenwood Indiana
 - Reconstructed 1,300 feet of channel
 - 245 acre watershed
 - 600 feet of channel classified as wetland
 - Goal to address maintenance issues and increase floodplain storage

Johnson County Indiana

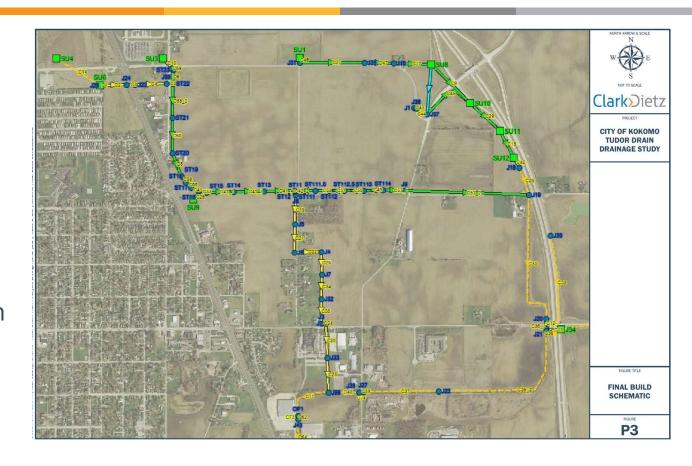
Channel Cross Section

Existing Wetland

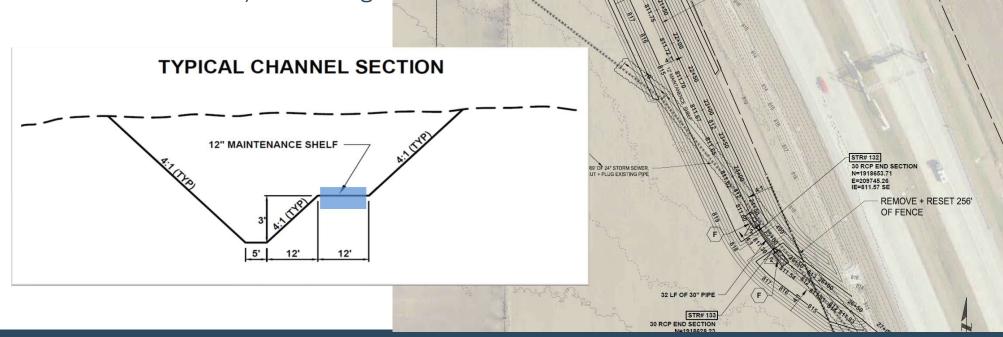

Johnson County Indiana

Post-Construction

- > EV battery factory in Kokomo, Howard County, Indiana
- Joint-venture company created by Stellantis and Samsung SDI


Source: Kokomo Tribune

- Watershed hydraulic model identified three locations for regional detention needed.
- One of those locations utilized two a two-stage ditch approach along with inline storage.



STR# 131 36 RCP END SECTION N=1919053.84 E=209561.44 IE=811.79 NW

100YR WSEL: 816,22'

- In-Line Storage
 - Low flow channel
 - Maintenance shelf/flood storage

Additional Resources

Additional Resources

- Two-Stage Agricultural Drainage Ditches Ohio Department of Natural Resources and Ohio State University have developed a two-stage ditch design
- Impact of two-stage ditch on water quality The Agriculture Water Management publication has online resources available
- Journal of the America Water Resources Association (JAWRA) has multiple articles on the benefits of two-stage ditches

Questions?

Brian Powers, P.E., CFM 317-808-3142

 $\underline{Brian.powers@clark dietz.com}$

Sam Robertson, P.E. 317-439-9458

 $\underline{sam.robertson@clarkdietz.com}$

