STORMWATER RESILIENCY IN THE BUILT COMMUNITY

Robert Page, PE

WHAT IS RESILIENCY?

Webster's Dictionary:

- An ability to recover from or adjust easily to adversity or change

Image Source: https://www.ready.gov/floods

RESILIENCE

A long-term **process** that is a balancing act between risk and resources, that results in the means to be flexibly innovative in **preparing** for, **coping** with, **responding** to, **recovering** from, and **transforming** in anticipation of or in response to events.

- (Comfort et al. 2010)

WHY?

- Stormwater is a leading and growing cause of water pollution
 - Urban stormwater is a leading source of impairment
 - 22,559 miles of impaired rivers and streams
 - 701,024 acres of impaired lakes
 - #1 cause of beach closures and advisory days in 2012

SIGNIFICANT AMOUNT OF UNKNOWNS

Future change in extreme precipitation by late 21st century (higher emissions)

Image Source: https://www.ready.gov/floods

STEPS TO RESILIENCE

https://toolkit.climate.gov/steps-to-resilience/steps-resilience-overview

Designing and implementing transportation infrastructure that can withstand and adapt to the impacts of climate change.

Incorporating climate projections into design, using adaptive design, enhancing resilience through maintenance and operations and applying nature-based solutions.

The process of identifying and analyzing the potential risks and impacts of climate change on transportation infrastructure and services. Identifying vulnerabilities, collecting climate data and projections, assessing risk and consequences, developing adaptation strategies and prioritizing actions.

> The process following extreme weather events and climate-related disaters to restore communities and transportation infrastructure.

Damage assessments, emergency repairs, recovery planning, temporary transportation solutions, long-term recovery, and risk reduction measures.

CLIMATE IMPACTS ON WATER RESOURCES

GREEN INFRASTRUCTURE BUILDS RESILIENCY

HNTB

WE WANT TO PRACTICE CLIMATE RESILIENCE BUT DON'T KNOW HOW.....

- Limited regulation
- Limited funding
- Added cost to implement resilience
- Uncertainty
- Data Availability/Source Reliability/Conflict
- Carrot & Stick issue
- Limited standardization, performance metrics
- Governance/Organizational structure
- Transformation
- Scale
- Agency Silos
- Transition from planning to implementation

HOW TO ESTIMATE?

- Options
 - Historic Events
 - Theoretical Events

MODELING

- Historic Events
- Theoretical Events

HNTB

MODELING

- Can be easy to modify
- Use to predict impacts

MODELING

- Not only for existing infrastructure
- Various scenarios

Verify Planning Scenarios

- Models developed years ago
- Verification of plans

HNTB

PLAN FOR FUTURE

Extreme event protection

WHAT TO DO?

- Define boundaries
- Assess and reduce risk
- Plan for and practice responding to emergencies
- Monitor systems

Robert Page Email: <u>rtpage@hntb.com</u> Phone: 317-917-5307

